These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin. Perálvarez-Marín A, Bourdelande JL, Querol E, Padrós E. Mol Membr Biol; 2006; 23(2):127-35. PubMed ID: 16754356 [Abstract] [Full Text] [Related]
5. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM, Booth PJ, Allen SJ, Khorana HG. J Mol Biol; 2001 Apr 27; 308(2):409-22. PubMed ID: 11327776 [Abstract] [Full Text] [Related]
7. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy. López-Llano J, Campos LA, Sancho J. Proteins; 2006 Aug 15; 64(3):769-78. PubMed ID: 16755589 [Abstract] [Full Text] [Related]
9. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice. Isenbarger TA, Krebs MP. Biochemistry; 1999 Jul 13; 38(28):9023-30. PubMed ID: 10413475 [Abstract] [Full Text] [Related]
10. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies. Sankararamakrishnan R, Vishveshwara S. Proteins; 1993 Jan 13; 15(1):26-41. PubMed ID: 8451238 [Abstract] [Full Text] [Related]
11. Stable folding core in the folding transition state of an alpha-helical integral membrane protein. Curnow P, Di Bartolo ND, Moreton KM, Ajoje OO, Saggese NP, Booth PJ. Proc Natl Acad Sci U S A; 2011 Aug 23; 108(34):14133-8. PubMed ID: 21831834 [Abstract] [Full Text] [Related]
15. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G, Steinmüller S, Berndsen T, Buss V, Gärtner W. Biochemistry; 1998 Jun 02; 37(22):8227-32. PubMed ID: 9609719 [Abstract] [Full Text] [Related]
16. Inter-helical hydrogen bonds are essential elements for intra-protein signal transduction: the role of Asp115 in bacteriorhodopsin transport function. Perálvarez-Marín A, Lórenz-Fonfría VA, Bourdelande JL, Querol E, Kandori H, Padrós E. J Mol Biol; 2007 May 04; 368(3):666-76. PubMed ID: 17367807 [Abstract] [Full Text] [Related]
17. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin. Farooq A. Biochemistry; 1998 Oct 27; 37(43):15170-6. PubMed ID: 9790681 [Abstract] [Full Text] [Related]
18. Structure of bacteriorhodopsin at 1.55 A resolution. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. J Mol Biol; 1999 Aug 27; 291(4):899-911. PubMed ID: 10452895 [Abstract] [Full Text] [Related]
19. The rate of isomerisation of peptidyl-proline bonds as a probe for interactions in the physiological denatured state of chymotrypsin inhibitor 2. Tan YJ, Oliveberg M, Otzen DE, Fersht AR. J Mol Biol; 1997 Jun 20; 269(4):611-22. PubMed ID: 9217264 [Abstract] [Full Text] [Related]
20. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin. Nishimura C, Dyson HJ, Wright PE. J Mol Biol; 2006 Jan 06; 355(1):139-56. PubMed ID: 16300787 [Abstract] [Full Text] [Related] Page: [Next] [New Search]