These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
377 related items for PubMed ID: 11329172
1. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL, Gustafsson L, Rigoulet M, Larsson C. Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [Abstract] [Full Text] [Related]
2. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Larsson C, Påhlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L. Yeast; 1998 Mar 15; 14(4):347-57. PubMed ID: 9559543 [Abstract] [Full Text] [Related]
3. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. Overkamp KM, Bakker BM, Kötter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT. J Bacteriol; 2000 May 15; 182(10):2823-30. PubMed ID: 10781551 [Abstract] [Full Text] [Related]
4. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L. Mol Cell Biochem; 2004 May 15; 256-257(1-2):73-81. PubMed ID: 14977171 [Abstract] [Full Text] [Related]
5. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. Påhlman IL, Larsson C, Averét N, Bunoust O, Boubekeur S, Gustafsson L, Rigoulet M. J Biol Chem; 2002 Aug 02; 277(31):27991-5. PubMed ID: 12032156 [Abstract] [Full Text] [Related]
6. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Canelas AB, van Gulik WM, Heijnen JJ. Biotechnol Bioeng; 2008 Jul 01; 100(4):734-43. PubMed ID: 18383140 [Abstract] [Full Text] [Related]
7. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J, Vemuri GN, Bao X, Olsson L. Appl Microbiol Biotechnol; 2009 Apr 01; 82(5):909-19. PubMed ID: 19221731 [Abstract] [Full Text] [Related]
8. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. Bakker BM, Bro C, Kötter P, Luttik MA, van Dijken JP, Pronk JT. J Bacteriol; 2000 Sep 01; 182(17):4730-7. PubMed ID: 10940011 [Abstract] [Full Text] [Related]
9. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Shi F, Kawai S, Mori S, Kono E, Murata K. FEBS J; 2005 Jul 01; 272(13):3337-49. PubMed ID: 15978040 [Abstract] [Full Text] [Related]
10. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. Luttik MA, Overkamp KM, Kötter P, de Vries S, van Dijken JP, Pronk JT. J Biol Chem; 1998 Sep 18; 273(38):24529-34. PubMed ID: 9733747 [Abstract] [Full Text] [Related]
11. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM, Bakker BM, Steensma HY, van Dijken JP, Pronk JT. Yeast; 2002 Jul 18; 19(10):813-24. PubMed ID: 12112236 [Abstract] [Full Text] [Related]
12. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z, Tsurugi K. FEBS J; 2006 Apr 18; 273(8):1696-709. PubMed ID: 16623706 [Abstract] [Full Text] [Related]
13. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Heiskanen A, Spégel C, Kostesha N, Lindahl S, Ruzgas T, Emnéus J. Anal Biochem; 2009 Jan 01; 384(1):11-9. PubMed ID: 18812160 [Abstract] [Full Text] [Related]
14. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Proc Natl Acad Sci U S A; 2007 Feb 13; 104(7):2402-7. PubMed ID: 17287356 [Abstract] [Full Text] [Related]
15. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data. Kleijn RJ, Geertman JM, Nfor BK, Ras C, Schipper D, Pronk JT, Heijnen JJ, van Maris AJ, van Winden WA. FEMS Yeast Res; 2007 Mar 13; 7(2):216-31. PubMed ID: 17132142 [Abstract] [Full Text] [Related]
16. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. Bakker BM, Overkamp KM, van Maris AJ, Kötter P, Luttik MA, van Dijken JP, Pronk JT. FEMS Microbiol Rev; 2001 Jan 13; 25(1):15-37. PubMed ID: 11152939 [Abstract] [Full Text] [Related]
17. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH. La Piana G, Marzulli D, Gorgoglione V, Lofrumento NE. Arch Biochem Biophys; 2005 Apr 01; 436(1):91-100. PubMed ID: 15752713 [Abstract] [Full Text] [Related]
18. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase. Prabhakar P, Laboy JI, Wang J, Budker T, Din ZZ, Chobanian M, Fahien LA. Arch Biochem Biophys; 1998 Dec 15; 360(2):195-205. PubMed ID: 9851831 [Abstract] [Full Text] [Related]
19. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. Hong HT, Nose A, Agarie S. J Exp Bot; 2004 Oct 15; 55(406):2201-11. PubMed ID: 15361538 [Abstract] [Full Text] [Related]
20. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U. Biochem Pharmacol; 2006 Feb 14; 71(4):399-407. PubMed ID: 16368075 [Abstract] [Full Text] [Related] Page: [Next] [New Search]