These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 11333032
1. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Chang YC, Okeke BC, Hatsu M, Takamizawa K. Bioresour Technol; 2001 Jun; 78(2):141-7. PubMed ID: 11333032 [Abstract] [Full Text] [Related]
2. Purification, cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Okeke BC, Chang YC, Hatsu M, Suzuki T, Takamizawa K. Can J Microbiol; 2001 May; 47(5):448-56. PubMed ID: 11400736 [Abstract] [Full Text] [Related]
3. Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria. Chang YC, Ikeutsu K, Toyama T, Choi D, Kikuchi S. J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1667-77. PubMed ID: 21437617 [Abstract] [Full Text] [Related]
4. Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. Chang YC, Kikuchi S, Kawauchi N, Sato T, Takamizawa K. Environ Technol; 2008 Apr; 29(4):381-91. PubMed ID: 18619143 [Abstract] [Full Text] [Related]
5. Tetrachloroethene metabolism of Dehalospirillum multivorans. Neumann A, Scholz-Muramatsu H, Diekert G. Arch Microbiol; 1994 Apr; 162(4):295-301. PubMed ID: 7802545 [Abstract] [Full Text] [Related]
6. Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. Terzenbach DP, Blaut M. FEMS Microbiol Lett; 1994 Oct 15; 123(1-2):213-8. PubMed ID: 7988892 [Abstract] [Full Text] [Related]
7. Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K. J Biosci Bioeng; 2000 Oct 15; 89(5):489-91. PubMed ID: 16232783 [Abstract] [Full Text] [Related]
8. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F, Zhao D, Paul C. Water Res; 2010 Apr 15; 44(7):2360-70. PubMed ID: 20106501 [Abstract] [Full Text] [Related]
9. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Hoelen TP, Reinhard M. Biodegradation; 2004 Dec 15; 15(6):395-403. PubMed ID: 15562997 [Abstract] [Full Text] [Related]
10. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Shim H, Ryoo D, Barbieri P, Wood TK. Appl Microbiol Biotechnol; 2001 Jul 15; 56(1-2):265-9. PubMed ID: 11499942 [Abstract] [Full Text] [Related]
11. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Vogel TM, McCarty PL. Appl Environ Microbiol; 1985 May 15; 49(5):1080-3. PubMed ID: 3923927 [Abstract] [Full Text] [Related]
12. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Lee IS, Bae JH, McCarty PL. J Contam Hydrol; 2007 Oct 30; 94(1-2):76-85. PubMed ID: 17610987 [Abstract] [Full Text] [Related]
13. Substrate hydrophobicity and cell composition influence the extent of rate limitation and masking of isotope fractionation during microbial reductive dehalogenation of chlorinated ethenes. Renpenning J, Rapp I, Nijenhuis I. Environ Sci Technol; 2015 Apr 07; 49(7):4293-301. PubMed ID: 25734359 [Abstract] [Full Text] [Related]
14. Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G. Arch Microbiol; 2002 May 07; 177(5):420-6. PubMed ID: 11976751 [Abstract] [Full Text] [Related]
15. Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Miller E, Wohlfarth G, Diekert G. Arch Microbiol; 1997 Dec 07; 168(6):513-9. PubMed ID: 9385143 [Abstract] [Full Text] [Related]
16. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
17. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Freedman DL, Gossett JM. Appl Environ Microbiol; 1989 Sep 20; 55(9):2144-51. PubMed ID: 2552919 [Abstract] [Full Text] [Related]
18. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M. J Ind Microbiol Biotechnol; 2005 Dec 20; 32(11-12):534-41. PubMed ID: 15959725 [Abstract] [Full Text] [Related]
19. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
20. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Scheutz C, Durant ND, Broholm MM. Biodegradation; 2014 Jun 01; 25(3):459-78. PubMed ID: 24233554 [Abstract] [Full Text] [Related] Page: [Next] [New Search]