These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparation, characterization and properties of poly(2,2-dimethyl trimethylene carbonate-co-epsilon-caprolactone)-block-poly(ethylene glycol). Hu Y, Zhu KJ. J Biomater Sci Polym Ed; 2003; 14(12):1363-76. PubMed ID: 14870940 [Abstract] [Full Text] [Related]
3. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A, Malda J, Dhert WJA, Grijpma DW. Int J Artif Organs; 2017 May 09; 40(4):176-184. PubMed ID: 28165584 [Abstract] [Full Text] [Related]
5. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J, Etxeberria A, Sarasua JR. J Mech Behav Biomed Mater; 2012 May 09; 9():100-12. PubMed ID: 22498288 [Abstract] [Full Text] [Related]
6. Photocurable liquid biodegradable copolymers: in vitro hydrolytic degradation behaviors of photocured films of coumarin-endcapped poly(epsilon-caprolactone-co-trimethylene carbonate). Mizutani M, Matsuda T. Biomacromolecules; 2002 May 09; 3(2):249-55. PubMed ID: 11888308 [Abstract] [Full Text] [Related]
7. Biodegradable elastomeric scaffolds for soft tissue engineering. Pêgo AP, Poot AA, Grijpma DW, Feijen J. J Control Release; 2003 Feb 21; 87(1-3):69-79. PubMed ID: 12618024 [Abstract] [Full Text] [Related]
8. Poly(D,L-lactide/epsilon-caprolactone)/hydroxyapatite composites. Ural E, Kesenci K, Fambri L, Migliaresi C, Piskin E. Biomaterials; 2000 Nov 21; 21(21):2147-54. PubMed ID: 10985487 [Abstract] [Full Text] [Related]
9. Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate). Mizutani M, Matsuda T. J Biomed Mater Res; 2002 Jul 21; 61(1):53-60. PubMed ID: 12001246 [Abstract] [Full Text] [Related]
10. Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. Pêgo AP, Poot AA, Grijpma DW, Feijen J. J Mater Sci Mater Med; 2003 Sep 21; 14(9):767-73. PubMed ID: 15348396 [Abstract] [Full Text] [Related]
14. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response. Pêgo AP, Van Luyn MJ, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J. J Biomed Mater Res A; 2003 Dec 01; 67(3):1044-54. PubMed ID: 14613255 [Abstract] [Full Text] [Related]
15. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Yang J, Hao Q, Liu X, Ba C, Cao A. Biomacromolecules; 2004 Dec 01; 5(1):209-18. PubMed ID: 14715028 [Abstract] [Full Text] [Related]
18. Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and epsilon-caprolactone. Cai Q, Bei J, Wang S. J Biomater Sci Polym Ed; 2000 Dec 01; 11(3):273-88. PubMed ID: 10841279 [Abstract] [Full Text] [Related]
19. Thermoplastic elastomers based on poly(lactide)-poly(trimethylene carbonate-co-caprolactone)-poly(lactide) triblock copolymers and their stereocomplexes. Zhang Z, Grijpma DW, Feijen J. J Control Release; 2006 Nov 28; 116(2):e29-31. PubMed ID: 17718953 [No Abstract] [Full Text] [Related]