These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride. Ratner MA, Decker SE, Aller SG, Weber G, Forrest JN. J Exp Zool A Comp Exp Biol; 2006 Mar 01; 305(3):259-67. PubMed ID: 16432888 [Abstract] [Full Text] [Related]
6. pCMBS-induced swelling of dogfish (Squalus acanthias) rectal gland cells: role of the Na+,K(+)-ATPase and the cytoskeleton. Kleinzeller A, Booz GW, Mills JW, Ziyadeh FN. Biochim Biophys Acta; 1990 Jun 11; 1025(1):21-31. PubMed ID: 2164417 [Abstract] [Full Text] [Related]
7. Sugar uptake, metabolism, and chloride secretion in the rectal gland of the spiny dogfish Squalus acanthias. Kinne R, Spokes KC, Silva P. Am J Physiol Regul Integr Comp Physiol; 2020 Jul 01; 319(1):R96-R105. PubMed ID: 32459971 [Abstract] [Full Text] [Related]
8. Active chloride transport in rabbit thick ascending limb of Henle's loop and elasmobranch rectal gland: chloride fluxes in isolated plasma membranes. Hannafin JA, Kinne R. J Comp Physiol B; 1985 Jul 01; 155(4):415-21. PubMed ID: 3837022 [Abstract] [Full Text] [Related]
11. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea. Sellinger M, Ballatori N, Boyer JL. Toxicol Appl Pharmacol; 1991 Feb 01; 107(2):369-76. PubMed ID: 1994517 [Abstract] [Full Text] [Related]
12. Regulation of the Na+2Cl–K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias. Warth R, Bleich M, Thiele I, Lang F, Greger R. Pflugers Arch; 1998 Jul 01; 436(4):521-8. PubMed ID: 9683724 [Abstract] [Full Text] [Related]
13. Inhibition of Na(+)-K(+)-2Cl(-) cotransport by mercury. Jacoby SC, Gagnon E, Caron L, Chang J, Isenring P. Am J Physiol; 1999 Oct 01; 277(4):C684-92. PubMed ID: 10516098 [Abstract] [Full Text] [Related]
15. Na-K-Cl cotransport in chloride-transporting epithelia. Epstein FH, Silva P. Ann N Y Acad Sci; 1985 Oct 01; 456():187-97. PubMed ID: 2418726 [Abstract] [Full Text] [Related]
16. Different effects of cyclosporine a and FK506 on potassium transport systems in MDCK cells. Aker S, Heering P, Kinne-Saffran E, Deppe C, Grabensee B, Kinne RK. Exp Nephrol; 2001 Oct 01; 9(5):332-40. PubMed ID: 11549851 [Abstract] [Full Text] [Related]
17. The shark rectal gland: a model for the active transport of chloride. Epstein FH. Yale J Biol Med; 1979 Oct 01; 52(6):517-23. PubMed ID: 231864 [Abstract] [Full Text] [Related]
18. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. Hilden S, Hokin LE. J Biol Chem; 1975 Aug 25; 250(16):6296-303. PubMed ID: 125752 [Abstract] [Full Text] [Related]
19. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B. J Biol Chem; 1995 Jul 28; 270(30):17977-85. PubMed ID: 7629105 [Abstract] [Full Text] [Related]
20. The anion specificity of the sodium-potassium-chloride cotransporter in rabbit kidney outer medulla: studies on medullary plasma membranes. Kinne R, Kinne-Saffran E, Schölermann B, Schütz H. Pflugers Arch; 1986 Jul 28; 407 Suppl 2():S168-73. PubMed ID: 3822763 [Abstract] [Full Text] [Related] Page: [Next] [New Search]