These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 11354728
1. Characterisation of airborne uranium and thorium contamination in northern England through measurement of U, Th and 235U/238U in tree bark. Bellis DJ, Ma R, McLeod CW. J Environ Monit; 2001 Feb; 3(2):198-201. PubMed ID: 11354728 [Abstract] [Full Text] [Related]
2. Airborne uranium contamination--as revealed through elemental and isotopic analysis of tree bark. Bellis D, Ma R, Bramall N, McLeod CW, Chapman N, Satake K. Environ Pollut; 2001 Feb; 114(3):383-7. PubMed ID: 11584636 [Abstract] [Full Text] [Related]
3. Airborne emission of enriched uranium at Tokai-mura, Japan. Bellis D, Ma R, Bramall N, McLeod CW. Sci Total Environ; 2001 Jan 17; 264(3):283-6. PubMed ID: 11213198 [Abstract] [Full Text] [Related]
4. Isotopic analysis of uranium in tree bark by ICP mass spectrometry: a strategy for assessment of airborne contamination. Ma R, Bellis D, McLeod CW. Anal Chem; 2000 Oct 15; 72(20):4878-81. PubMed ID: 11055703 [Abstract] [Full Text] [Related]
5. Uranium isotopes in tree bark as a spatial tracer of environmental contamination near former uranium processing facilities in southwest Ohio. Conte E, Widom E, Kuentz D. J Environ Radioact; 2017 Nov 15; 178-179():265-278. PubMed ID: 28918084 [Abstract] [Full Text] [Related]
6. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants. Pourcelot L, Masson O, Renaud P, Cagnat X, Boulet B, Cariou N, De Vismes-Ott A. J Environ Radioact; 2015 Mar 15; 141():1-7. PubMed ID: 25500060 [Abstract] [Full Text] [Related]
7. The potential of elemental and isotopic analysis of tree bark for discriminating sources of airborne lead contamination in the UK. Bellis D, McLeod CW, Satake K. J Environ Monit; 2001 Feb 15; 3(2):194-7. PubMed ID: 11354727 [Abstract] [Full Text] [Related]
8. Anomalous ratios of radioisotopes in PM10 as tracer of global fallout impact in the centre of Mexico. Méndez-García CG, Romero-Guzmán ET, Hernández-Mendoza H, Solís Rosales C, Chávez Lomelí ER. Isotopes Environ Health Stud; 2018 Oct 15; 54(5):451-462. PubMed ID: 30081672 [Abstract] [Full Text] [Related]
9. Comparative uptake of U and Th by native plants at a U production site. Ibrahim SA, Whicker FW. Health Phys; 1988 Apr 15; 54(4):413-9. PubMed ID: 3350662 [Abstract] [Full Text] [Related]
10. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers. Hare D, Tolmachev S, James A, Bishop D, Austin C, Fryer F, Doble P. Anal Chem; 2010 Apr 15; 82(8):3176-82. PubMed ID: 20218581 [Abstract] [Full Text] [Related]
11. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels. Masson O, Pourcelot L, Boulet B, Cagnat X, Videau G. J Environ Radioact; 2015 Mar 15; 141():146-52. PubMed ID: 25613358 [Abstract] [Full Text] [Related]
12. The daily intake of 234,235,238U, 228,230,232Th and 226,228Ra by New York City residents. Fisenne IM, Perry PM, Decker KM, Keller HW. Health Phys; 1987 Oct 15; 53(4):357-63. PubMed ID: 3654223 [Abstract] [Full Text] [Related]
13. Variation of uranium isotopic composition in soil within the JCO grounds from the 30 September 1999 criticality accident at JCO, Tokai-mura, Japan. Yamamoto M, Kawabata Y, Murata Y, Komura K. Health Phys; 2002 Aug 15; 83(2):197-203. PubMed ID: 12132708 [Abstract] [Full Text] [Related]
14. U and Th in some brown coals of Serbia and Montenegro and their environmental impact. Zivotić D, Grzetić I, Lorenz H, Simić V. Environ Sci Pollut Res Int; 2008 Mar 15; 15(2):155-61. PubMed ID: 18380235 [Abstract] [Full Text] [Related]
15. 238U series isotopes and 232Th in carbonates and black shales from the Lesser Himalaya: implications to dissolved uranium abundances in Ganga-Indus source waters. Singh SK, Dalai TK, Krishnaswami S. J Environ Radioact; 2003 Mar 15; 67(1):69-90. PubMed ID: 12634002 [Abstract] [Full Text] [Related]
16. Atmospheric release of volatilized species of radioelements from coal-fired plants. Tadmor J. Health Phys; 1986 Feb 15; 50(2):270-3. PubMed ID: 3949518 [No Abstract] [Full Text] [Related]
17. Environmental effects of natural radionuclides from coal-fired power plants. Nakaoka A, Fukushima M, Takagi S. Health Phys; 1984 Sep 15; 47(3):407-16. PubMed ID: 6500942 [Abstract] [Full Text] [Related]
18. Distribution of toxic and radiation components in air particulates. Rausch H, Sziklai IL, Borossay J, Torkos K, Rikker T, Zemplén-Papp E. Sci Total Environ; 1995 Dec 01; 173-174():283-91. PubMed ID: 8560225 [Abstract] [Full Text] [Related]
19. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry. Boulyga SF, Becker JS. Fresenius J Anal Chem; 2001 Jul 01; 370(5):612-7. PubMed ID: 11496994 [Abstract] [Full Text] [Related]
20. Radioecological survey at selected sites hit by depleted uranium ammunitions during the 1999 Kosovo conflict. Sansone U, Danesi PR, Barbizzi S, Belli M, Campbell M, Gaudino S, Jia G, Ocone R, Pati A, Rosamilia S, Stellato L. Sci Total Environ; 2001 Dec 17; 281(1-3):23-35. PubMed ID: 11778955 [Abstract] [Full Text] [Related] Page: [Next] [New Search]