These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 11356024

  • 1. Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells.
    Lang H, Fekete DM.
    Dev Biol; 2001 Jun 01; 234(1):120-37. PubMed ID: 11356024
    [Abstract] [Full Text] [Related]

  • 2. Islet-1 expression in the developing chicken inner ear.
    Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S.
    J Comp Neurol; 2004 Sep 06; 477(1):1-10. PubMed ID: 15281076
    [Abstract] [Full Text] [Related]

  • 3. Lineage analysis of inner ear cells using genomic tags for clonal identification.
    Satoh T, Fekete DM.
    Methods Mol Biol; 2009 Sep 06; 493():47-63. PubMed ID: 18839341
    [Abstract] [Full Text] [Related]

  • 4. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear.
    Satoh T, Fekete DM.
    Development; 2005 Apr 06; 132(7):1687-97. PubMed ID: 15743876
    [Abstract] [Full Text] [Related]

  • 5. Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat.
    von Bartheld CS, Patterson SL, Heuer JG, Wheeler EF, Bothwell M, Rubel EW.
    Development; 1991 Oct 06; 113(2):455-70. PubMed ID: 1664321
    [Abstract] [Full Text] [Related]

  • 6. Lineage analysis of the late otocyst stage mouse inner ear by transuterine microinjection of a retroviral vector encoding alkaline phosphatase and an oligonucleotide library.
    Jiang H, Wang L, Beier KT, Cepko CL, Fekete DM, Brigande JV.
    PLoS One; 2013 Oct 06; 8(7):e69314. PubMed ID: 23935981
    [Abstract] [Full Text] [Related]

  • 7. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development.
    Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J.
    Development; 1998 Dec 06; 125(23):4645-54. PubMed ID: 9806914
    [Abstract] [Full Text] [Related]

  • 8. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage.
    Hans S, Irmscher A, Brand M.
    Development; 2013 May 06; 140(9):1936-45. PubMed ID: 23571216
    [Abstract] [Full Text] [Related]

  • 9. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C, Ozeki H, Uchijima Y, Suzukawa K, Mitani A, Fukuhara S, Nishiyama K, Kurihara Y, Kondo K, Aburatani H, Kaga K, Yamasoba T, Kurihara H.
    J Comp Neurol; 2010 Dec 01; 518(23):4702-22. PubMed ID: 20963824
    [Abstract] [Full Text] [Related]

  • 10. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses.
    Kil SH, Collazo A.
    Dev Biol; 2001 May 15; 233(2):365-79. PubMed ID: 11336501
    [Abstract] [Full Text] [Related]

  • 11. A review of inner ear fate maps and cell lineage studies.
    Kil SH, Collazo A.
    J Neurobiol; 2002 Nov 05; 53(2):129-42. PubMed ID: 12382271
    [Abstract] [Full Text] [Related]

  • 12. Temporal coupling between specifications of neuronal and macular fates of the inner ear.
    Deng X, Wu DK.
    Dev Biol; 2016 Jun 01; 414(1):21-33. PubMed ID: 27083418
    [Abstract] [Full Text] [Related]

  • 13. Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear.
    Germiller JA, Smiley EC, Ellis AD, Hoff JS, Deshmukh I, Allen SJ, Barald KF.
    Dev Dyn; 2004 Dec 01; 231(4):815-27. PubMed ID: 15517566
    [Abstract] [Full Text] [Related]

  • 14. Isolation and Characterization of Mammalian Otic Progenitor Cells that Can Differentiate into Both Sensory Epithelial and Neuronal Cell Lineages.
    Kojima K, Nishida AT, Tashiro K, Hirota K, Nishio T, Murata M, Kato N, Kawaguchi S, Zine A, Ito J, Van De Water TR.
    Anat Rec (Hoboken); 2020 Mar 01; 303(3):451-460. PubMed ID: 31943808
    [Abstract] [Full Text] [Related]

  • 15. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects.
    Nakajima Y.
    Congenit Anom (Kyoto); 2015 Feb 01; 55(1):17-25. PubMed ID: 25040109
    [Abstract] [Full Text] [Related]

  • 16. Descriptive and experimental analysis of the epithelial remodellings that control semicircular canal formation in the developing mouse inner ear.
    Martin P, Swanson GJ.
    Dev Biol; 1993 Oct 01; 159(2):549-58. PubMed ID: 8405678
    [Abstract] [Full Text] [Related]

  • 17. Fate map of the chicken otic placode.
    Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M.
    Development; 2014 Jun 01; 141(11):2302-12. PubMed ID: 24821982
    [Abstract] [Full Text] [Related]

  • 18. Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle.
    Ali MM, Jayabalan S, Machnicki M, Sohal GS.
    Int J Dev Neurosci; 2003 Jun 01; 21(4):199-208. PubMed ID: 12781787
    [Abstract] [Full Text] [Related]

  • 19. Dlx gene expression during chick inner ear development.
    Brown ST, Wang J, Groves AK.
    J Comp Neurol; 2005 Feb 28; 483(1):48-65. PubMed ID: 15672396
    [Abstract] [Full Text] [Related]

  • 20. Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick.
    Neves J, Kamaid A, Alsina B, Giraldez F.
    J Comp Neurol; 2007 Aug 01; 503(4):487-500. PubMed ID: 17534940
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.