These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
3. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. Daff S, Sagami I, Shimizu T. J Biol Chem; 1999 Oct 22; 274(43):30589-95. PubMed ID: 10521442 [Abstract] [Full Text] [Related]
4. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences. Roman LJ, McLain J, Masters BS. J Biol Chem; 2003 Jul 11; 278(28):25700-7. PubMed ID: 12730215 [Abstract] [Full Text] [Related]
5. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains. Guan ZW, Kamatani D, Kimura S, Iyanagi T. J Biol Chem; 2003 Aug 15; 278(33):30859-68. PubMed ID: 12777376 [Abstract] [Full Text] [Related]
6. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase. Garnaud PE, Koetsier M, Ost TW, Daff S. Biochemistry; 2004 Aug 31; 43(34):11035-44. PubMed ID: 15323562 [Abstract] [Full Text] [Related]
7. Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase. Fuziwara S, Sagami I, Rozhkova E, Craig D, Noble MA, Munro AW, Chapman SK, Shimizu T. J Inorg Biochem; 2002 Sep 20; 91(4):515-26. PubMed ID: 12237219 [Abstract] [Full Text] [Related]
8. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK. Eur J Biochem; 1996 Jul 15; 239(2):403-9. PubMed ID: 8706747 [Abstract] [Full Text] [Related]
9. Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes. Neeli R, Roitel O, Scrutton NS, Munro AW. J Biol Chem; 2005 May 06; 280(18):17634-44. PubMed ID: 15710617 [Abstract] [Full Text] [Related]
10. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase. Guan ZW, Iyanagi T. Arch Biochem Biophys; 2003 Apr 01; 412(1):65-76. PubMed ID: 12646269 [Abstract] [Full Text] [Related]
11. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW. Biochemistry; 2004 May 11; 43(18):5474-87. PubMed ID: 15122913 [Abstract] [Full Text] [Related]
12. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Kitazume T, Haines DC, Estabrook RW, Chen B, Peterson JA. Biochemistry; 2007 Oct 23; 46(42):11892-901. PubMed ID: 17902705 [Abstract] [Full Text] [Related]
13. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains. Haque MM, Fadlalla MA, Aulak KS, Ghosh A, Durra D, Stuehr DJ. J Biol Chem; 2012 Aug 31; 287(36):30105-16. PubMed ID: 22722929 [Abstract] [Full Text] [Related]
14. Intraprotein electron transfer in a two-domain construct of neuronal nitric oxide synthase: the output state in nitric oxide formation. Feng C, Tollin G, Holliday MA, Thomas C, Salerno JC, Enemark JH, Ghosh DK. Biochemistry; 2006 May 23; 45(20):6354-62. PubMed ID: 16700546 [Abstract] [Full Text] [Related]
15. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Govindaraj S, Poulos TL. Biochemistry; 1995 Sep 05; 34(35):11221-6. PubMed ID: 7669780 [Abstract] [Full Text] [Related]
16. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis. Miyajima M, Sagami I, Daff S, Taiko Migita C, Shimizu T. Biochem Biophys Res Commun; 2000 Sep 07; 275(3):752-8. PubMed ID: 10973794 [Abstract] [Full Text] [Related]
17. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Knight K, Scrutton NS. Biochem J; 2002 Oct 01; 367(Pt 1):19-30. PubMed ID: 12079493 [Abstract] [Full Text] [Related]
18. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Yamamoto K, Kimura S, Shiro Y, Iyanagi T. Arch Biochem Biophys; 2005 Aug 01; 440(1):65-78. PubMed ID: 16009330 [Abstract] [Full Text] [Related]
19. Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG, Chapman SK. Biochemistry; 1999 Dec 14; 38(50):16413-8. PubMed ID: 10600101 [Abstract] [Full Text] [Related]
20. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Haines DC, Sevrioukova IF, Peterson JA. Biochemistry; 2000 Aug 08; 39(31):9419-29. PubMed ID: 10924137 [Abstract] [Full Text] [Related] Page: [Next] [New Search]