These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 11356835

  • 1. Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae.
    Grundmann O, Mösch HU, Braus GH.
    J Biol Chem; 2001 Jul 13; 276(28):25661-71. PubMed ID: 11356835
    [Abstract] [Full Text] [Related]

  • 2. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2.
    Rolfes RJ, Hinnebusch AG.
    Mol Cell Biol; 1993 Aug 13; 13(8):5099-111. PubMed ID: 8336737
    [Abstract] [Full Text] [Related]

  • 3. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG.
    Mol Cell Biol; 1985 Sep 13; 5(9):2349-60. PubMed ID: 3915540
    [Abstract] [Full Text] [Related]

  • 4. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R, Hinnebusch AG, Tamame M.
    Genetics; 1998 Mar 13; 148(3):1007-20. PubMed ID: 9539420
    [Abstract] [Full Text] [Related]

  • 5. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae.
    Albrecht G, Mösch HU, Hoffmann B, Reusser U, Braus GH.
    J Biol Chem; 1998 May 22; 273(21):12696-702. PubMed ID: 9582292
    [Abstract] [Full Text] [Related]

  • 6. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.
    Abastado JP, Miller PF, Jackson BM, Hinnebusch AG.
    Mol Cell Biol; 1991 Jan 22; 11(1):486-96. PubMed ID: 1986242
    [Abstract] [Full Text] [Related]

  • 7. Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae.
    Steffensen L, Pedersen PA.
    Eukaryot Cell; 2006 Feb 22; 5(2):248-61. PubMed ID: 16467466
    [Abstract] [Full Text] [Related]

  • 8. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG.
    Mol Microbiol; 1993 Oct 22; 10(2):215-23. PubMed ID: 7934812
    [Abstract] [Full Text] [Related]

  • 9. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase.
    Yang R, Wek SA, Wek RC.
    Mol Cell Biol; 2000 Apr 22; 20(8):2706-17. PubMed ID: 10733573
    [Abstract] [Full Text] [Related]

  • 10. Complex formation by positive and negative translational regulators of GCN4.
    Cigan AM, Foiani M, Hannig EM, Hinnebusch AG.
    Mol Cell Biol; 1991 Jun 22; 11(6):3217-28. PubMed ID: 2038327
    [Abstract] [Full Text] [Related]

  • 11. Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae.
    Bushman JL, Asuru AI, Matts RL, Hinnebusch AG.
    Mol Cell Biol; 1993 Mar 22; 13(3):1920-32. PubMed ID: 8441423
    [Abstract] [Full Text] [Related]

  • 12. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA.
    Williams NP, Hinnebusch AG, Donahue TF.
    Proc Natl Acad Sci U S A; 1989 Oct 22; 86(19):7515-9. PubMed ID: 2678106
    [Abstract] [Full Text] [Related]

  • 13. Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation.
    Tavernarakis N, Alexandraki D, Liodis P, Tzamarias D, Thireos G.
    Gene; 1996 Nov 14; 179(2):271-7. PubMed ID: 8972911
    [Abstract] [Full Text] [Related]

  • 14. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast.
    Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ.
    Mol Cell Biol; 2001 Jul 14; 21(13):4347-68. PubMed ID: 11390663
    [Abstract] [Full Text] [Related]

  • 15. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP, Miller PF, Hinnebusch AG.
    New Biol; 1991 May 14; 3(5):511-24. PubMed ID: 1883814
    [Abstract] [Full Text] [Related]

  • 16. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3.
    Garcia-Barrio MT, Naranda T, Vazquez de Aldana CR, Cuesta R, Hinnebusch AG, Hershey JW, Tamame M.
    Genes Dev; 1995 Jul 15; 9(14):1781-96. PubMed ID: 7542616
    [Abstract] [Full Text] [Related]

  • 17. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function.
    Hannig EM, Hinnebusch AG.
    Mol Cell Biol; 1988 Nov 15; 8(11):4808-20. PubMed ID: 3062370
    [Abstract] [Full Text] [Related]

  • 18. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z, Bowman SB, Kornfeld GD, Brown AJ, Dawes IW.
    Biochem J; 1999 Jun 15; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [Abstract] [Full Text] [Related]

  • 19. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.
    Pascual-Ahuir A, Serrano R, Proft M.
    Mol Cell Biol; 2001 Jan 15; 21(1):16-25. PubMed ID: 11113177
    [Abstract] [Full Text] [Related]

  • 20. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases.
    Ramirez M, Wek RC, Vazquez de Aldana CR, Jackson BM, Freeman B, Hinnebusch AG.
    Mol Cell Biol; 1992 Dec 15; 12(12):5801-15. PubMed ID: 1448107
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.