These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 11359923

  • 1. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.
    Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL.
    Mol Biol Cell; 2001 May; 12(5):1303-14. PubMed ID: 11359923
    [Abstract] [Full Text] [Related]

  • 2. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L, Sztul E.
    J Cell Biol; 2003 Jan 20; 160(2):157-63. PubMed ID: 12538638
    [Abstract] [Full Text] [Related]

  • 3. Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.
    Kiser GL, Gentzsch M, Kloser AK, Balzi E, Wolf DH, Goffeau A, Riordan JR.
    Arch Biochem Biophys; 2001 Jun 15; 390(2):195-205. PubMed ID: 11396922
    [Abstract] [Full Text] [Related]

  • 4. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein.
    Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S.
    J Biol Chem; 2004 Sep 10; 279(37):38369-78. PubMed ID: 15252059
    [Abstract] [Full Text] [Related]

  • 5. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM.
    Nat Cell Biol; 2001 Jan 10; 3(1):100-5. PubMed ID: 11146634
    [Abstract] [Full Text] [Related]

  • 6. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.
    Stolz A, Besser S, Hottmann H, Wolf DH.
    Proc Natl Acad Sci U S A; 2013 Sep 17; 110(38):15271-6. PubMed ID: 23988329
    [Abstract] [Full Text] [Related]

  • 7. Degradation of CFTR by the ubiquitin-proteasome pathway.
    Ward CL, Omura S, Kopito RR.
    Cell; 1995 Oct 06; 83(1):121-7. PubMed ID: 7553863
    [Abstract] [Full Text] [Related]

  • 8. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z, Mazzochi C, King SA, Hong JS, Sorscher EJ.
    J Biol Chem; 1998 Nov 06; 273(45):29873-8. PubMed ID: 9792704
    [Abstract] [Full Text] [Related]

  • 9. Delta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression.
    Okiyoneda T, Harada K, Takeya M, Yamahira K, Wada I, Shuto T, Suico MA, Hashimoto Y, Kai H.
    Mol Biol Cell; 2004 Feb 06; 15(2):563-74. PubMed ID: 14595111
    [Abstract] [Full Text] [Related]

  • 10. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation.
    Oberdorf J, Carlson EJ, Skach WR.
    Biochemistry; 2001 Nov 06; 40(44):13397-405. PubMed ID: 11683650
    [Abstract] [Full Text] [Related]

  • 11. Endoplasmic reticulum degradation: reverse protein flow of no return.
    Sommer T, Wolf DH.
    FASEB J; 1997 Dec 06; 11(14):1227-33. PubMed ID: 9409541
    [Abstract] [Full Text] [Related]

  • 12. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR.
    Rubenstein RC, Zeitlin PL.
    Am J Physiol Cell Physiol; 2000 Feb 06; 278(2):C259-67. PubMed ID: 10666020
    [Abstract] [Full Text] [Related]

  • 13. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome.
    de Virgilio M, Weninger H, Ivessa NE.
    J Biol Chem; 1998 Apr 17; 273(16):9734-43. PubMed ID: 9545309
    [Abstract] [Full Text] [Related]

  • 14. ER-associated complexes (ERACs) containing aggregated cystic fibrosis transmembrane conductance regulator (CFTR) are degraded by autophagy.
    Fu L, Sztul E.
    Eur J Cell Biol; 2009 Apr 17; 88(4):215-26. PubMed ID: 19131141
    [Abstract] [Full Text] [Related]

  • 15. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway.
    Hiller MM, Finger A, Schweiger M, Wolf DH.
    Science; 1996 Sep 20; 273(5282):1725-8. PubMed ID: 8781238
    [Abstract] [Full Text] [Related]

  • 16. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator.
    Gelman MS, Kannegaard ES, Kopito RR.
    J Biol Chem; 2002 Apr 05; 277(14):11709-14. PubMed ID: 11812794
    [Abstract] [Full Text] [Related]

  • 17. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
    Farinha CM, Amaral MD.
    Mol Cell Biol; 2005 Jun 05; 25(12):5242-52. PubMed ID: 15923638
    [Abstract] [Full Text] [Related]

  • 18. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.
    Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR.
    EMBO J; 1998 Dec 01; 17(23):6879-87. PubMed ID: 9843494
    [Abstract] [Full Text] [Related]

  • 19. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase.
    Guerriero CJ, Weiberth KF, Brodsky JL.
    J Biol Chem; 2013 Jun 21; 288(25):18506-20. PubMed ID: 23653356
    [Abstract] [Full Text] [Related]

  • 20. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p.
    Walter J, Urban J, Volkwein C, Sommer T.
    EMBO J; 2001 Jun 15; 20(12):3124-31. PubMed ID: 11406589
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.