These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
438 related items for PubMed ID: 11359935
1. TGF-beta3-induced palatogenesis requires matrix metalloproteinases. Blavier L, Lazaryev A, Groffen J, Heisterkamp N, DeClerck YA, Kaartinen V. Mol Biol Cell; 2001 May; 12(5):1457-66. PubMed ID: 11359935 [Abstract] [Full Text] [Related]
2. Pathogenesis of cleft palate in TGF-beta3 knockout mice. Taya Y, O'Kane S, Ferguson MW. Development; 1999 Sep; 126(17):3869-79. PubMed ID: 10433915 [Abstract] [Full Text] [Related]
3. Matrix metalloproteinases have a role in palatogenesis. Brown NL, Yarram SJ, Mansell JP, Sandy JR. J Dent Res; 2002 Dec; 81(12):826-30. PubMed ID: 12454096 [Abstract] [Full Text] [Related]
4. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y. Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827 [Abstract] [Full Text] [Related]
5. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Kaartinen V, Cui XM, Heisterkamp N, Groffen J, Shuler CF. Dev Dyn; 1997 Jul 01; 209(3):255-60. PubMed ID: 9215640 [Abstract] [Full Text] [Related]
6. The expression of TGF-β3 for epithelial-mesenchyme transdifferentiated MEE in palatogenesis. Nakajima A, Tanaka E, Ito Y, Maeno M, Iwata K, Shimizu N, Shuler CF. J Mol Histol; 2010 Dec 01; 41(6):343-55. PubMed ID: 20967564 [Abstract] [Full Text] [Related]
7. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion. Gato A, Martinez ML, Tudela C, Alonso I, Moro JA, Formoso MA, Ferguson MW, Martínez-Alvarez C. Dev Biol; 2002 Oct 15; 250(2):393-405. PubMed ID: 12376112 [Abstract] [Full Text] [Related]
8. Follistatin antagonizes transforming growth factor-beta3-induced epithelial-mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis. Nogai H, Rosowski M, Grün J, Rietz A, Debus N, Schmidt G, Lauster C, Janitz M, Vortkamp A, Lauster R. Differentiation; 2008 Apr 15; 76(4):404-16. PubMed ID: 18028449 [Abstract] [Full Text] [Related]
9. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway. Dudas M, Nagy A, Laping NJ, Moustakas A, Kaartinen V. Dev Biol; 2004 Feb 01; 266(1):96-108. PubMed ID: 14729481 [Abstract] [Full Text] [Related]
10. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion. Britto JA, Evans RD, Hayward RD, Jones BM. Cleft Palate Craniofac J; 2002 May 01; 39(3):332-40. PubMed ID: 12019011 [Abstract] [Full Text] [Related]
11. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V. Dev Biol; 2015 Feb 15; 398(2):231-41. PubMed ID: 25523394 [Abstract] [Full Text] [Related]
12. Temporospatial distribution of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinases during murine secondary palate morphogenesis. Morris-Wiman J, Burch H, Basco E. Anat Embryol (Berl); 2000 Aug 15; 202(2):129-41. PubMed ID: 10985432 [Abstract] [Full Text] [Related]
13. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate. Cui XM, Shiomi N, Chen J, Saito T, Yamamoto T, Ito Y, Bringas P, Chai Y, Shuler CF. Dev Biol; 2005 Feb 01; 278(1):193-202. PubMed ID: 15649471 [Abstract] [Full Text] [Related]
14. Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgfβ3(-/-) Mouse Fetuses. Warner D, Ding J, Mukhopadhyay P, Brock G, Smolenkova IA, Seelan RS, Webb CL, Wittliff JL, Greene RM, Pisano MM. Microrna; 2015 Feb 01; 4(1):64-71. PubMed ID: 26159804 [Abstract] [Full Text] [Related]
15. A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion. Choi KY, Kim HJ, Cho BC, Kim IS, Kim HJ, Ryoo HM. J Cell Biochem; 2009 Jul 01; 107(4):818-25. PubMed ID: 19415673 [Abstract] [Full Text] [Related]
16. Immunohistochemical localization of TGF-beta type II receptor and TGF-beta3 during palatogenesis in vivo and in vitro. Cui XM, Warburton D, Zhao J, Crowe DL, Shuler CF. Int J Dev Biol; 1998 Sep 01; 42(6):817-20. PubMed ID: 9727838 [Abstract] [Full Text] [Related]
17. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y. Dev Biol; 2005 Jan 01; 277(1):102-13. PubMed ID: 15572143 [Abstract] [Full Text] [Related]
18. MMPs and TIMPs expression in facial tissue of children with cleft lip and palate. Smane-Filipova L, Pilmane M, Akota I. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2016 Dec 01; 160(4):538-542. PubMed ID: 27876897 [Abstract] [Full Text] [Related]
19. Matrix metalloproteinase-25 has a functional role in mouse secondary palate development and is a downstream target of TGF-β3. Brown GD, Nazarali AJ. BMC Dev Biol; 2010 Sep 01; 10():93. PubMed ID: 20809987 [Abstract] [Full Text] [Related]
20. Regional divergence of palate medial edge epithelium along the anterior to posterior axis. Jin JZ, Warner DR, Ding J. Int J Dev Biol; 2014 Sep 01; 58(9):713-7. PubMed ID: 25896208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]