These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 11368010

  • 1. Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase.
    Cvrk T, Strobel HW.
    Arch Biochem Biophys; 2001 Jan 15; 385(2):290-300. PubMed ID: 11368010
    [Abstract] [Full Text] [Related]

  • 2. Role of THR501 residue in substrate binding and catalytic activity of cytochrome P4501A1.
    Cvrk T, Strobel HW.
    Arch Biochem Biophys; 2001 May 01; 389(1):31-40. PubMed ID: 11370669
    [Abstract] [Full Text] [Related]

  • 3. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O, Scrutton NS, Munro AW.
    Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506
    [Abstract] [Full Text] [Related]

  • 4. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ, Desai SK, Marohnic CC.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):99-110. PubMed ID: 11566032
    [Abstract] [Full Text] [Related]

  • 5. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):45-53. PubMed ID: 11566026
    [Abstract] [Full Text] [Related]

  • 6. Residue 285 in cytochrome P450 2B4 lacking the NH(2)-terminal hydrophobic sequence has a role in the functional association of NADPH-cytochrome P450 reductase.
    Schulze J, Tschöp K, Lehnerer M, Hlavica P.
    Biochem Biophys Res Commun; 2000 Apr 21; 270(3):777-81. PubMed ID: 10772901
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Assessment of arginine 97 and lysine 72 as determinants of substrate specificity in cytochrome P450 2C9 (CYP2C9).
    Davies C, Witham K, Scott JR, Pearson A, DeVoss JJ, Graham SE, Gillam EM.
    Drug Metab Dispos; 2004 Apr 21; 32(4):431-6. PubMed ID: 15039296
    [Abstract] [Full Text] [Related]

  • 9. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H, Gruenke L, Saribas AS, Im SC, Shen AL, Kasper CB, Waskell L.
    Biochemistry; 2003 Jun 10; 42(22):6804-13. PubMed ID: 12779335
    [Abstract] [Full Text] [Related]

  • 10. Interaction site for soluble cytochromes on the tetraheme cytochrome subunit bound to the bacterial photosynthetic reaction center mapped by site-directed mutagenesis.
    Osyczka A, Nagashima KV, Sogabe S, Miki K, Yoshida M, Shimada K, Matsuura K.
    Biochemistry; 1998 Aug 25; 37(34):11732-44. PubMed ID: 9718296
    [Abstract] [Full Text] [Related]

  • 11. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA, Dhawan IK, Johnson MK, Barber MJ.
    Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972
    [Abstract] [Full Text] [Related]

  • 12. Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis.
    Lewis BC, Mackenzie PI, Miners JO.
    Arch Biochem Biophys; 2007 Dec 01; 468(1):58-69. PubMed ID: 17959138
    [Abstract] [Full Text] [Related]

  • 13. Engineering of a functional human NADH-dependent cytochrome P450 system.
    Döhr O, Paine MJ, Friedberg T, Roberts GC, Wolf CR.
    Proc Natl Acad Sci U S A; 2001 Jan 02; 98(1):81-6. PubMed ID: 11136248
    [Abstract] [Full Text] [Related]

  • 14. The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain.
    Estabrook RW, Shet MS, Fisher CW, Jenkins CM, Waterman MR.
    Arch Biochem Biophys; 1996 Sep 01; 333(1):308-15. PubMed ID: 8806785
    [Abstract] [Full Text] [Related]

  • 15. Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b(5) enzymes.
    Shimada T, Mernaugh RL, Guengerich FP.
    Arch Biochem Biophys; 2005 Mar 01; 435(1):207-16. PubMed ID: 15680923
    [Abstract] [Full Text] [Related]

  • 16. Roles of key active-site residues in flavocytochrome P450 BM3.
    Noble MA, Miles CS, Chapman SK, Lysek DA, MacKay AC, Reid GA, Hanzlik RP, Munro AW.
    Biochem J; 1999 Apr 15; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269
    [Abstract] [Full Text] [Related]

  • 17. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC, Kim Y, Yermalitskaya LV, Yermalitsky VN, Lepesheva GI, Kelly SL, Waterman MR, Podust LM.
    Structure; 2006 Jan 15; 14(1):51-61. PubMed ID: 16407065
    [Abstract] [Full Text] [Related]

  • 18. Electrostatic interaction between cytochrome P450 and NADPH-P450 reductase: comparison of mixed and fused systems consisting of rat cytochrome P450 1A1 and yeast NADPH-P450 reductase.
    Kondo S, Sakaki T, Ohkawa H, Inouye K.
    Biochem Biophys Res Commun; 1999 Apr 13; 257(2):273-8. PubMed ID: 10198202
    [Abstract] [Full Text] [Related]

  • 19. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase.
    Modi S, Gilham DE, Sutcliffe MJ, Lian LY, Primrose WU, Wolf CR, Roberts GC.
    Biochemistry; 1997 Apr 15; 36(15):4461-70. PubMed ID: 9109653
    [Abstract] [Full Text] [Related]

  • 20. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC, Bewley MC, Barber MJ.
    Biochemistry; 2003 Sep 30; 42(38):11170-82. PubMed ID: 14503867
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.