These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 11368019

  • 1. Tyrosine residue 300 is important for activity and stability of branching enzyme from Escherichia coli.
    Mikkelsen R, Binderup K, Preiss J.
    Arch Biochem Biophys; 2001 Jan 15; 385(2):372-7. PubMed ID: 11368019
    [Abstract] [Full Text] [Related]

  • 2. Glutamate-459 is important for Escherichia coli branching enzyme activity.
    Binderup K, Preiss J.
    Biochemistry; 1998 Jun 23; 37(25):9033-7. PubMed ID: 9636047
    [Abstract] [Full Text] [Related]

  • 3. Arginine residue 384 at the catalytic center is important for branching enzyme II from maize endosperm.
    Libessart N, Preiss J.
    Arch Biochem Biophys; 1998 Dec 01; 360(1):135-41. PubMed ID: 9826438
    [Abstract] [Full Text] [Related]

  • 4. Limited proteolysis of branching enzyme from Escherichia coli.
    Binderup K, Mikkelsen R, Preiss J.
    Arch Biochem Biophys; 2000 May 15; 377(2):366-71. PubMed ID: 10845715
    [Abstract] [Full Text] [Related]

  • 5. The N-terminal region of the starch-branching enzyme from Phaseolus vulgaris L. is essential for optimal catalysis and structural stability.
    Hamada S, Ito H, Ueno H, Takeda Y, Matsui H.
    Phytochemistry; 2007 May 15; 68(10):1367-75. PubMed ID: 17408708
    [Abstract] [Full Text] [Related]

  • 6. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr(607) residue.
    Lorenzon RZ, Cunha CE, Marcondes MF, Machado MF, Juliano MA, Oliveira V, Travassos LR, Paschoalin T, Carmona AK.
    Arch Biochem Biophys; 2010 Aug 15; 500(2):131-6. PubMed ID: 20513640
    [Abstract] [Full Text] [Related]

  • 7. Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: functional analysis of conserved aromatic amino acids in Region 1.
    Nes WD, Sinha A, Jayasimha P, Zhou W, Song Z, Dennis AL.
    Arch Biochem Biophys; 2006 Apr 15; 448(1-2):23-30. PubMed ID: 16271698
    [Abstract] [Full Text] [Related]

  • 8. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM, Zapata G, Picone R, Vann WF.
    Biochem J; 1999 Oct 15; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [Abstract] [Full Text] [Related]

  • 9. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes.
    Hong S, Preiss J.
    Arch Biochem Biophys; 2000 Jun 15; 378(2):349-55. PubMed ID: 10860552
    [Abstract] [Full Text] [Related]

  • 10. Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.
    Hill MA, Preiss J.
    Biochem Biophys Res Commun; 1998 Mar 17; 244(2):573-7. PubMed ID: 9514953
    [Abstract] [Full Text] [Related]

  • 11. Farnesyl protein transferase: identification of K164 alpha and Y300 beta as catalytic residues by mutagenesis and kinetic studies.
    Wu Z, Demma M, Strickland CL, Radisky ES, Poulter CD, Le HV, Windsor WT.
    Biochemistry; 1999 Aug 31; 38(35):11239-49. PubMed ID: 10471273
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the amino terminus of maize branching enzyme II by polymerase chain reaction random mutagenesis.
    Hong S, Mikkelsen R, Preiss J.
    Arch Biochem Biophys; 2001 Feb 01; 386(1):62-8. PubMed ID: 11361001
    [Abstract] [Full Text] [Related]

  • 13. Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189.
    Hege T, Baumann U.
    J Mol Biol; 2001 Nov 23; 314(2):187-93. PubMed ID: 11718553
    [Abstract] [Full Text] [Related]

  • 14. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C, Jensen KF.
    Biochemistry; 1999 Mar 16; 38(11):3327-34. PubMed ID: 10079076
    [Abstract] [Full Text] [Related]

  • 15. Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus.
    Takata H, Takaha T, Kuriki T, Okada S, Takagi M, Imanaka T.
    Appl Environ Microbiol; 1994 Sep 16; 60(9):3096-104. PubMed ID: 7944355
    [Abstract] [Full Text] [Related]

  • 16. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis.
    Zhang HY, Zhang J, Lin L, Du WY, Lu J.
    Biochem Biophys Res Commun; 1993 Apr 15; 192(1):15-21. PubMed ID: 8476416
    [Abstract] [Full Text] [Related]

  • 17. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK, Keeffe JR, Kast P, Mayo SL.
    Biochemistry; 2007 Jun 12; 46(23):6883-91. PubMed ID: 17506527
    [Abstract] [Full Text] [Related]

  • 18. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P, Colman RF.
    Arch Biochem Biophys; 2002 May 01; 401(1):81-90. PubMed ID: 12054490
    [Abstract] [Full Text] [Related]

  • 19. Site-directed mutants of charged residues in the active site of tyrosine hydroxylase.
    Daubner SC, Fitzpatrick PF.
    Biochemistry; 1999 Apr 06; 38(14):4448-54. PubMed ID: 10194366
    [Abstract] [Full Text] [Related]

  • 20. A single mutation at Tyr143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide-adenine dinucleotide.
    Beluzić R, Cuk M, Pavkov T, Fumić K, Barić I, Mudd SH, Jurak I, Vugrek O.
    Biochem J; 2006 Dec 01; 400(2):245-53. PubMed ID: 16872278
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.