These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


369 related items for PubMed ID: 11373685

  • 1. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide.
    Polacek N, Gaynor M, Yassin A, Mankin AS.
    Nature; 2001 May 24; 411(6836):498-501. PubMed ID: 11373685
    [Abstract] [Full Text] [Related]

  • 2. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD, Lang K, Wotzel B, Rieder R, Micura R, Polacek N.
    J Am Chem Soc; 2006 Apr 05; 128(13):4453-9. PubMed ID: 16569023
    [Abstract] [Full Text] [Related]

  • 3. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA.
    Khaitovich P, Tenson T, Kloss P, Mankin AS.
    Biochemistry; 1999 Feb 09; 38(6):1780-8. PubMed ID: 10026258
    [Abstract] [Full Text] [Related]

  • 4. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes.
    Rodriguez-Fonseca C, Amils R, Garrett RA.
    J Mol Biol; 1995 Mar 24; 247(2):224-35. PubMed ID: 7707371
    [Abstract] [Full Text] [Related]

  • 5. pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive.
    Xiong L, Polacek N, Sander P, Böttger EC, Mankin A.
    RNA; 2001 Oct 24; 7(10):1365-9. PubMed ID: 11680840
    [Abstract] [Full Text] [Related]

  • 6. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
    Samaha RR, Green R, Noller HF.
    Nature; 1995 Sep 28; 377(6547):309-14. PubMed ID: 7566085
    [Abstract] [Full Text] [Related]

  • 7. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451.
    Erlacher MD, Lang K, Shankaran N, Wotzel B, Hüttenhofer A, Micura R, Mankin AS, Polacek N.
    Nucleic Acids Res; 2005 Sep 28; 33(5):1618-27. PubMed ID: 15767286
    [Abstract] [Full Text] [Related]

  • 8. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit.
    Thompson J, Kim DF, O'Connor M, Lieberman KR, Bayfield MA, Gregory ST, Green R, Noller HF, Dahlberg AE.
    Proc Natl Acad Sci U S A; 2001 Jul 31; 98(16):9002-7. PubMed ID: 11470897
    [Abstract] [Full Text] [Related]

  • 9. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA.
    Green R, Noller HF.
    Biochemistry; 1999 Feb 09; 38(6):1772-9. PubMed ID: 10026257
    [Abstract] [Full Text] [Related]

  • 10. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach.
    Porse BT, Garrett RA.
    J Mol Biol; 1995 May 26; 249(1):1-10. PubMed ID: 7776364
    [Abstract] [Full Text] [Related]

  • 11. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R, Samaha RR, Noller HF.
    J Mol Biol; 1997 Feb 14; 266(1):40-50. PubMed ID: 9054969
    [Abstract] [Full Text] [Related]

  • 12. Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes.
    Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA.
    Nucleic Acids Res; 2004 Feb 14; 32(12):3760-70. PubMed ID: 15256541
    [Abstract] [Full Text] [Related]

  • 13. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA.
    Khaitovich P, Mankin AS.
    J Mol Biol; 1999 Sep 03; 291(5):1025-34. PubMed ID: 10518940
    [Abstract] [Full Text] [Related]

  • 14. How ribosomes make peptide bonds.
    Rodnina MV, Beringer M, Wintermeyer W.
    Trends Biochem Sci; 2007 Jan 03; 32(1):20-6. PubMed ID: 17157507
    [Abstract] [Full Text] [Related]

  • 15. Mutations in the conserved P loop perturb the conformation of two structural elements in the peptidyl transferase center of 23 S ribosomal RNA.
    Gregory ST, Dahlberg AE.
    J Mol Biol; 1999 Jan 29; 285(4):1475-83. PubMed ID: 9917390
    [Abstract] [Full Text] [Related]

  • 16. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop.
    Douthwaite S, Aagaard C.
    J Mol Biol; 1993 Aug 05; 232(3):725-31. PubMed ID: 7689111
    [Abstract] [Full Text] [Related]

  • 17. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination.
    Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N.
    Nucleic Acids Res; 2007 Aug 05; 35(15):5130-40. PubMed ID: 17660192
    [Abstract] [Full Text] [Related]

  • 18. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome].
    Maĭvali U, Saarma U, Remme Ia.
    Mol Biol (Mosk); 2001 Aug 05; 35(4):666-71. PubMed ID: 11524953
    [Abstract] [Full Text] [Related]

  • 19. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H, Yamamoto H, Uchiumi T, Wada A.
    Genes Cells; 2004 Apr 05; 9(4):271-8. PubMed ID: 15066119
    [Abstract] [Full Text] [Related]

  • 20. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV, Bogdanov AA, Dahlberg AE, Dontsova O.
    J Mol Biol; 2000 Jun 02; 299(2):379-89. PubMed ID: 10860746
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.