These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 11375093

  • 1. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J, Alerstam T.
    Proc Biol Sci; 2001 May 22; 268(1471):1081-7. PubMed ID: 11375093
    [Abstract] [Full Text] [Related]

  • 2. Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift Apus apus.
    Bäckman J, Alerstam T.
    J Exp Biol; 2002 Apr 22; 205(Pt 7):905-10. PubMed ID: 11916987
    [Abstract] [Full Text] [Related]

  • 3. Flight speeds of swifts (Apus apus): seasonal differences smaller than expected.
    Henningsson P, Karlsson H, Bäckman J, Alerstam T, Hedenström A.
    Proc Biol Sci; 2009 Jul 07; 276(1666):2395-401. PubMed ID: 19324733
    [Abstract] [Full Text] [Related]

  • 4. Gliding for a free lunch: biomechanics of foraging flight in common swifts (Apus apus).
    Hedrick TL, Pichot C, de Margerie E.
    J Exp Biol; 2018 Nov 19; 221(Pt 22):. PubMed ID: 30455382
    [Abstract] [Full Text] [Related]

  • 5. Aerodynamics of gliding flight in common swifts.
    Henningsson P, Hedenström A.
    J Exp Biol; 2011 Feb 01; 214(Pt 3):382-93. PubMed ID: 21228197
    [Abstract] [Full Text] [Related]

  • 6. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
    Sjöberg S, Nilsson C.
    Biol Lett; 2015 Jun 01; 11(6):20150337. PubMed ID: 26085501
    [Abstract] [Full Text] [Related]

  • 7. Drink safely: common swifts (Apus apus) dissipate mechanical energy to decrease flight speed before touch-and-go drinking.
    Ruaux G, Monmasson K, Hedrick TL, Lumineau S, de Margerie E.
    J Exp Biol; 2023 Mar 15; 226(6):. PubMed ID: 36806419
    [Abstract] [Full Text] [Related]

  • 8. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts.
    Åkesson S, Bianco G, Hedenström A.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528783
    [Abstract] [Full Text] [Related]

  • 9. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.
    Aurbach A, Schmid B, Liechti F, Chokani N, Abhari R.
    J Theor Biol; 2018 Oct 07; 454():126-138. PubMed ID: 29874554
    [Abstract] [Full Text] [Related]

  • 10. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK.
    Science; 2010 Feb 05; 327(5966):682-5. PubMed ID: 20133570
    [Abstract] [Full Text] [Related]

  • 11. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL, Wakefield ED, Phillips RA.
    Mov Ecol; 2018 Feb 05; 6():3. PubMed ID: 29556395
    [Abstract] [Full Text] [Related]

  • 12. The problem of estimating wind drift in migrating birds.
    Green M, Alerstam T.
    J Theor Biol; 2002 Oct 21; 218(4):485-96. PubMed ID: 12384051
    [Abstract] [Full Text] [Related]

  • 13. Annual 10-Month Aerial Life Phase in the Common Swift Apus apus.
    Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S.
    Curr Biol; 2016 Nov 21; 26(22):3066-3070. PubMed ID: 28094028
    [Abstract] [Full Text] [Related]

  • 14. [Radar tracking of day and night flight of swifts (Apus spus)].
    Bruderer B, Weitnauer E.
    Rev Suisse Zool; 1972 Nov 21; 79(4):1190-200. PubMed ID: 4671229
    [No Abstract] [Full Text] [Related]

  • 15. European shags optimize their flight behavior according to wind conditions.
    Kogure Y, Sato K, Watanuki Y, Wanless S, Daunt F.
    J Exp Biol; 2016 Feb 21; 219(Pt 3):311-8. PubMed ID: 26847559
    [Abstract] [Full Text] [Related]

  • 16. Urban areas affect flight altitudes of nocturnally migrating birds.
    Cabrera-Cruz SA, Smolinsky JA, McCarthy KP, Buler JJ.
    J Anim Ecol; 2019 Dec 21; 88(12):1873-1887. PubMed ID: 31330569
    [Abstract] [Full Text] [Related]

  • 17. How swifts control their glide performance with morphing wings.
    Lentink D, Müller UK, Stamhuis EJ, de Kat R, van Gestel W, Veldhuis LL, Henningsson P, Hedenström A, Videler JJ, van Leeuwen JL.
    Nature; 2007 Apr 26; 446(7139):1082-5. PubMed ID: 17460673
    [Abstract] [Full Text] [Related]

  • 18. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH, Guilford T, Meade J, Geraldes P, Ramos JA, Garthe S.
    Zoology (Jena); 2010 Jan 26; 113(1):47-56. PubMed ID: 20060697
    [Abstract] [Full Text] [Related]

  • 19. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A, Vorotkov M, Bulyuk V, Bolshakov C.
    Behav Processes; 2020 Aug 26; 177():104154. PubMed ID: 32479841
    [Abstract] [Full Text] [Related]

  • 20. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW, Woodworth BK, Taylor PD, Norris DR.
    Mov Ecol; 2015 Aug 26; 3(1):19. PubMed ID: 26279850
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.