These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 11381163
1. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements. Berli CL, Quemada D. Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163 [Abstract] [Full Text] [Related]
2. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood. Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N. Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548 [Abstract] [Full Text] [Related]
3. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Murata T. Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183 [Abstract] [Full Text] [Related]
4. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions. Lerche D, Frömer D. Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179 [Abstract] [Full Text] [Related]
5. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA. IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529 [Abstract] [Full Text] [Related]
6. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction. Ismailov RM. Theor Biol Med Model; 2005 Mar 30; 2():13. PubMed ID: 15799779 [Abstract] [Full Text] [Related]
7. Temperature-dependent threshold shear stress of red blood cell aggregation. Lim HJ, Lee YJ, Nam JH, Chung S, Shin S. J Biomech; 2010 Feb 10; 43(3):546-50. PubMed ID: 19878949 [Abstract] [Full Text] [Related]
8. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity. Janzen J, Elliott TG, Carter CJ, Brooks DE. Biorheology; 2000 Feb 10; 37(3):225-37. PubMed ID: 11026942 [Abstract] [Full Text] [Related]
9. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation. Antonova N, Riha P, Ivanov I. Clin Hemorheol Microcirc; 2008 Feb 10; 39(1-4):69-78. PubMed ID: 18503112 [Abstract] [Full Text] [Related]
10. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Armstrong JK, Meiselman HJ, Wenby RB, Fisher TC. Biorheology; 2001 Feb 10; 38(2-3):239-47. PubMed ID: 11381178 [Abstract] [Full Text] [Related]
11. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel. Shin S, Park MS, Ku YH, Suh JS. Clin Hemorheol Microcirc; 2006 Feb 10; 34(1-2):353-61. PubMed ID: 16543657 [Abstract] [Full Text] [Related]
12. Ultrasound scattering from concentrated suspensions of aggregated red cells in shear flow. Haider L, Snabre P, Boynard M. Clin Hemorheol Microcirc; 2004 Feb 10; 30(3-4):345-52. PubMed ID: 15258365 [Abstract] [Full Text] [Related]
13. [Characteristic transient times measured by backscattered laser light in blood suspension flow (author's transl)]. Mills P, Quemada D, Dufaux J. J Mal Vasc; 1981 Feb 10; 6(2):125-7. PubMed ID: 7288316 [Abstract] [Full Text] [Related]
14. Oscillating viscometer--evaluation of a new bedside test. Mark M, Häusler K, Dual J, Reinhart WH. Biorheology; 2006 Feb 10; 43(2):133-46. PubMed ID: 16687783 [Abstract] [Full Text] [Related]
15. The influence of cryoglobulins on the temperature-dependent erythrocyte aggregation in vitro by backscattering nephelometry. Konstantinova NA, Matveeva NA, Sirko IV, Firsov NN. Clin Hemorheol Microcirc; 2004 Feb 10; 30(1):25-32. PubMed ID: 14967880 [Abstract] [Full Text] [Related]
16. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Faivre M, Abkarian M, Bickraj K, Stone HA. Biorheology; 2006 Feb 10; 43(2):147-59. PubMed ID: 16687784 [Abstract] [Full Text] [Related]
17. Numerical simulations of pulsatile blood flow using a new constitutive model. Fang J, Owens RG. Biorheology; 2006 Feb 10; 43(5):637-60. PubMed ID: 17047282 [Abstract] [Full Text] [Related]
18. [Outlook for clinical hemorheology]. Stoltz JF. J Mal Vasc; 1996 Feb 10; 21(1):7-15. PubMed ID: 8656093 [Abstract] [Full Text] [Related]
19. Blood viscosity modelling: influence of aggregate network dynamics under transient conditions. Kaliviotis E, Yianneskis M. Biorheology; 2011 Feb 10; 48(2):127-47. PubMed ID: 21811017 [Abstract] [Full Text] [Related]