These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


746 related items for PubMed ID: 11385296

  • 1. Exercise training activates large-conductance calcium-activated K(+) channels and enhances nitric oxide production in rat mesenteric artery and thoracic aorta.
    Chen SJ, Wu CC, Yen MH.
    J Biomed Sci; 2001; 8(3):248-55. PubMed ID: 11385296
    [Abstract] [Full Text] [Related]

  • 2. Androgen deprivation facilitates acetylcholine-induced relaxation by superoxide anion generation.
    Ferrer M, Tejera N, Marín J, Balfagón G.
    Clin Sci (Lond); 1999 Dec; 97(6):625-31. PubMed ID: 10585889
    [Abstract] [Full Text] [Related]

  • 3. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.
    Mata KM, Li W, Reslan OM, Siddiqui WT, Opsasnick LA, Khalil RA.
    Am J Physiol Heart Circ Physiol; 2015 Nov 15; 309(10):H1679-96. PubMed ID: 26408543
    [Abstract] [Full Text] [Related]

  • 4. Comparison of the effects of supplementation with whey mineral and potassium on arterial tone in experimental hypertension.
    Wu X, Tolvanen JP, Hutri-Kähönen N, Kähönen M, Mäkynen H, Korpela R, Ruskoaho H, Karjala K, Pörsti I.
    Cardiovasc Res; 1998 Nov 15; 40(2):364-74. PubMed ID: 9893730
    [Abstract] [Full Text] [Related]

  • 5. Vascular effects of long-term propranolol administration after chronic nitric oxide blockade.
    Priviero FB, Teixeira CE, Claudino MA, De Nucci G, Zanesco A, Antunes E.
    Eur J Pharmacol; 2007 Oct 01; 571(2-3):189-96. PubMed ID: 17610863
    [Abstract] [Full Text] [Related]

  • 6. Upregulation of intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats.
    Giachini FR, Carneiro FS, Lima VV, Carneiro ZN, Dorrance A, Webb RC, Tostes RC.
    Transl Res; 2009 Oct 01; 154(4):183-93. PubMed ID: 19766962
    [Abstract] [Full Text] [Related]

  • 7. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries.
    Pourageaud F, Bappel-Gozalbes C, Marthan R, Freslon JL.
    Br J Pharmacol; 2000 Nov 01; 131(6):1211-9. PubMed ID: 11082130
    [Abstract] [Full Text] [Related]

  • 8. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC.
    Vascul Pharmacol; 2007 May 01; 46(5):353-9. PubMed ID: 17258511
    [Abstract] [Full Text] [Related]

  • 9. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.
    Mori A, Suzuki S, Sakamoto K, Nakahara T, Ishii K.
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan 01; 383(1):27-34. PubMed ID: 20978884
    [Abstract] [Full Text] [Related]

  • 10. Relaxing effects of phytoestrogen alpha-zearalanol on rat thoracic aorta rings in vitro.
    Wang W, Jiang D, Zhu Y, Liu W, Duan J, Dai S.
    Chin J Physiol; 2009 Apr 30; 52(2):99-105. PubMed ID: 19764345
    [Abstract] [Full Text] [Related]

  • 11. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R, Hiley CR.
    Br J Pharmacol; 1997 Dec 30; 122(8):1573-84. PubMed ID: 9422801
    [Abstract] [Full Text] [Related]

  • 12. NO contributes to EDHF-like responses in rat small arteries: a role for NO stores.
    Chauhan S, Rahman A, Nilsson H, Clapp L, MacAllister R, Ahluwalia A.
    Cardiovasc Res; 2003 Jan 30; 57(1):207-16. PubMed ID: 12504830
    [Abstract] [Full Text] [Related]

  • 13. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats.
    Kimura K, Nishio I.
    Scand J Clin Lab Invest; 1999 May 30; 59(3):199-204. PubMed ID: 10400164
    [Abstract] [Full Text] [Related]

  • 14. Differential mechanisms for insulin-induced relaxations in mouse posterior tibial arteries and main mesenteric arteries.
    Qu D, Liu J, Lau CW, Huang Y.
    Vascul Pharmacol; 2014 Dec 30; 63(3):173-7. PubMed ID: 25446161
    [Abstract] [Full Text] [Related]

  • 15. Magnesium lithospermate B dilates mesenteric arteries by activating BKCa currents and contracts arteries by inhibiting K(V) currents.
    Zhang HF, Chen XQ, Hu GY, Wang YP.
    Acta Pharmacol Sin; 2010 Jun 30; 31(6):665-70. PubMed ID: 20453873
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats.
    Albarwani S, Al-Siyabi S, Al-Husseini I, Al-Ismail A, Al-Lawati I, Al-Bahrani I, Tanira MO.
    Physiol Res; 2015 Jun 30; 64(1):39-49. PubMed ID: 25194131
    [Abstract] [Full Text] [Related]

  • 19. Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta.
    Qu Z, Zhang J, Gao W, Chen H, Guo H, Wang T, Li H, Liu C.
    J Ethnopharmacol; 2014 Aug 08; 155(1):572-9. PubMed ID: 24924524
    [Abstract] [Full Text] [Related]

  • 20. Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava.
    Raffetto JD, Yu P, Reslan OM, Xia Y, Khalil RA.
    J Vasc Surg; 2012 Jun 08; 55(6):1716-25. PubMed ID: 22209615
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.