These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 11396984

  • 1. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR, French SA, Balaban RS.
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [Abstract] [Full Text] [Related]

  • 2. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase.
    Territo PR, Mootha VK, French SA, Balaban RS.
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C423-35. PubMed ID: 10666039
    [Abstract] [Full Text] [Related]

  • 3. Opening of potassium channels protects mitochondrial function from calcium overload.
    Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Osbakken MD, Whitman GJ.
    J Surg Res; 2000 Dec; 94(2):116-23. PubMed ID: 11104651
    [Abstract] [Full Text] [Related]

  • 4. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y, Stanley WC, Saidel GM, Cabrera ME, Landesberg A.
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [Abstract] [Full Text] [Related]

  • 5. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV, Scaduto RC.
    Arch Biochem Biophys; 1995 Feb 01; 316(2):815-20. PubMed ID: 7864638
    [Abstract] [Full Text] [Related]

  • 6. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV, Galkin MA, Sedlov AV, Vinogradov AD.
    Biochemistry (Mosc); 1999 Oct 01; 64(10):1128-37. PubMed ID: 10561559
    [Abstract] [Full Text] [Related]

  • 7. The role of calcium in the control of respiration by muscle mitochondria.
    McMillin JB, Madden MC.
    Med Sci Sports Exerc; 1989 Aug 01; 21(4):406-10. PubMed ID: 2528667
    [Abstract] [Full Text] [Related]

  • 8. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering.
    Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS.
    J Biol Chem; 2001 Jan 26; 276(4):2586-99. PubMed ID: 11029457
    [Abstract] [Full Text] [Related]

  • 9. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM, Fagian MM, Vercesi AE, Gontijo JA.
    Nephrol Dial Transplant; 2007 Oct 26; 22(10):2817-23. PubMed ID: 17556421
    [Abstract] [Full Text] [Related]

  • 10. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F.
    Bull Math Biol; 2006 Oct 26; 68(7):1779-818. PubMed ID: 16832733
    [Abstract] [Full Text] [Related]

  • 11. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N, Lefaucheur L, Fillaut M, Vincent A, Herpin P.
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb 26; 140(2):287-97. PubMed ID: 15649776
    [Abstract] [Full Text] [Related]

  • 12. Effects of bepridil on heart mitochondrial membrane and the isolated rat heart preparation.
    Fuchs J, Mainka L, Reifart N, Zimmer G.
    Arzneimittelforschung; 1986 Feb 26; 36(2):209-12. PubMed ID: 2938592
    [Abstract] [Full Text] [Related]

  • 13. Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells.
    Anmann T, Eimre M, Kuznetsov AV, Andrienko T, Kaambre T, Sikk P, Seppet E, Tiivel T, Vendelin M, Seppet E, Saks VA.
    FEBS J; 2005 Jun 26; 272(12):3145-61. PubMed ID: 15955072
    [Abstract] [Full Text] [Related]

  • 14. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria].
    Karadzhov IuS, Kudzina LIu, Zinchenko VP.
    Biofizika; 1988 Jun 26; 33(1):77-82. PubMed ID: 3370241
    [Abstract] [Full Text] [Related]

  • 15. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ, Fox DA.
    Toxicol Appl Pharmacol; 1994 Apr 26; 125(2):309-21. PubMed ID: 8171438
    [Abstract] [Full Text] [Related]

  • 16. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form.
    Bronnikov GE, Samoylova EV.
    Biochem Int; 1987 May 26; 14(5):859-69. PubMed ID: 2900638
    [Abstract] [Full Text] [Related]

  • 17. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency.
    Cardoso CM, Custódio JB, Almeida LM, Moreno AJ.
    Toxicol Appl Pharmacol; 2001 Nov 01; 176(3):145-52. PubMed ID: 11714246
    [Abstract] [Full Text] [Related]

  • 18. Valsartan improves mitochondrial function in hearts submitted to acute ischemia.
    Monteiro P, Duarte AI, Gonçalves LM, Providência LA.
    Eur J Pharmacol; 2005 Aug 22; 518(2-3):158-64. PubMed ID: 16055115
    [Abstract] [Full Text] [Related]

  • 19. Dynamic simulation of mitochondrial respiration and oxidative phosphorylation: comparison with experimental results.
    Guillaud F, Hannaert P.
    Acta Biotheor; 2008 Jun 22; 56(1-2):157-72. PubMed ID: 18231864
    [Abstract] [Full Text] [Related]

  • 20. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA, Santos MS, Alpoim MC, Madeira VM, Vicente JA.
    J Biochem Mol Toxicol; 2002 Jun 22; 16(2):53-63. PubMed ID: 11979422
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.