These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 11397785
1. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation. Wakisaka M, Kitazono T, Kato M, Nakamura U, Yoshioka M, Uchizono Y, Yoshinari M. Circ Res; 2001 Jun 08; 88(11):1183-8. PubMed ID: 11397785 [Abstract] [Full Text] [Related]
2. Normalization of glucose entry under the high glucose condition by phlorizin attenuates the high glucose-induced morphological and functional changes of cultured bovine retinal pericytes. Wakisaka M, Yoshinari M, Asano T, Iino K, Nakamura S, Takata Y, Fujishima M. Biochim Biophys Acta; 1999 Jan 06; 1453(1):83-91. PubMed ID: 9989248 [Abstract] [Full Text] [Related]
3. Suppression of sodium-dependent glucose uptake by captopril improves high-glucose-induced morphological and functional changes of cultured bovine retinal pericytes. Wakisaka M, Yoshinari M, Nakamura S, Asano T, Sonoki K, Shi Ah, Iwase M, Takata Y, Fujishima M. Microvasc Res; 1999 Nov 06; 58(3):215-23. PubMed ID: 10527765 [Abstract] [Full Text] [Related]
4. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells. Wakisaka M, Nagao T, Yoshinari M. PLoS One; 2016 Nov 06; 11(3):e0151585. PubMed ID: 26999015 [Abstract] [Full Text] [Related]
5. Amiloride inhibits hydrogen peroxide-induced Ca2+ responses in human CNS pericytes. Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Shono Y, Hagiwara N, Ago T, Ooboshi H, Ibayashi S, Iida M. Microvasc Res; 2009 May 06; 77(3):327-34. PubMed ID: 19154746 [Abstract] [Full Text] [Related]
6. Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes. Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Matsuo R, Hagiwara N, Ishikawa E, Ooboshi H, Ibayashi S, Iida M. Am J Physiol Heart Circ Physiol; 2008 Apr 06; 294(4):H1700-7. PubMed ID: 18263712 [Abstract] [Full Text] [Related]
7. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells. Matsuoka T, Nishizaki T, Kisby GE. J Neurochem; 1998 Feb 06; 70(2):772-7. PubMed ID: 9453573 [Abstract] [Full Text] [Related]
8. Na+-dependent glucose uptake and collagen synthesis by cultured bovine retinal pericytes. Wakisaka M, Yoshinari M, Yamamoto M, Nakamura S, Asano T, Himeno T, Ichikawa K, Doi Y, Fujishima M. Biochim Biophys Acta; 1997 Nov 28; 1362(1):87-96. PubMed ID: 9434103 [Abstract] [Full Text] [Related]
9. Calcium influx pathways in rat CNS pericytes. Kamouchi M, Kitazono T, Ago T, Wakisaka M, Ooboshi H, Ibayashi S, Iida M. Brain Res Mol Brain Res; 2004 Jul 26; 126(2):114-20. PubMed ID: 15249134 [Abstract] [Full Text] [Related]
10. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Mandarino LJ, Finlayson J, Hassell JR. Invest Ophthalmol Vis Sci; 1994 Mar 26; 35(3):964-72. PubMed ID: 8125759 [Abstract] [Full Text] [Related]
11. Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Nishizaki T, Matsuoka T. Stroke; 1998 Apr 26; 29(4):844-9. PubMed ID: 9550521 [Abstract] [Full Text] [Related]
12. Characterization of a Na(+)-Ca(2+) exchanger in podocytes. Fischer KG, Jonas N, Poschenrieder F, Cohen C, Kretzler M, Greiber S, Pavenstädt H. Nephrol Dial Transplant; 2002 Oct 26; 17(10):1742-50. PubMed ID: 12270979 [Abstract] [Full Text] [Related]
13. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose. Blais A. Am J Physiol; 1991 Jun 26; 260(6 Pt 1):C1245-52. PubMed ID: 2058655 [Abstract] [Full Text] [Related]
14. External bioenergy-induced increases in intracellular free calcium concentrations are mediated by Na+/Ca2+ exchanger and L-type calcium channel. Kiang JG, Ives JA, Jonas WB. Mol Cell Biochem; 2005 Mar 26; 271(1-2):51-9. PubMed ID: 15881655 [Abstract] [Full Text] [Related]
15. Effects of endothelin on cultured bovine retinal microvascular pericytes. Ramachandran E, Frank RN, Kennedy A. Invest Ophthalmol Vis Sci; 1993 Mar 26; 34(3):586-95. PubMed ID: 8449678 [Abstract] [Full Text] [Related]
16. Altered endothelin-1 induced contraction and second messenger generation in bovine retinal microvascular pericytes cultured in high glucose medium. Chakravarthy U, McGinty A, McKillop J, Anderson P, Archer DB, Trimble ER. Diabetologia; 1994 Jan 26; 37(1):36-42. PubMed ID: 8150228 [Abstract] [Full Text] [Related]
17. Inhibition of Na/Ca exchange in pancreatic islet cells by 3',4'-dichlorobenzamil. Plasman PO, Lebrun P, Cragoe EJ, Herchuelz A. Biochem Pharmacol; 1991 Jun 01; 41(11):1759-68. PubMed ID: 2043164 [Abstract] [Full Text] [Related]
18. Contractile responses of cultured bovine retinal pericytes to angiotensin II. Matsugi T, Chen Q, Anderson DR. Arch Ophthalmol; 1997 Oct 01; 115(10):1281-5. PubMed ID: 9338674 [Abstract] [Full Text] [Related]
19. Role of Na+/H+ exchanger in acetylcholine-mediated pulmonary artery contraction of spontaneously hypertensive rats. Chau WH, Lee WH, Lau WH, Kwan YW, Au AL, Raymond K. Eur J Pharmacol; 2003 Mar 19; 464(2-3):177-87. PubMed ID: 12620512 [Abstract] [Full Text] [Related]
20. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M, Tomasevic J, Wright EM. Biochemistry; 2003 Aug 05; 42(30):9147-52. PubMed ID: 12885248 [Abstract] [Full Text] [Related] Page: [Next] [New Search]