These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 11398755

  • 1. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles.
    Kelty JD, Lee RE.
    J Exp Biol; 2001 May; 204(Pt 9):1659-66. PubMed ID: 11398755
    [Abstract] [Full Text] [Related]

  • 2. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster.
    Kelty JD, Lee RE.
    J Insect Physiol; 1999 Aug; 45(8):719-726. PubMed ID: 12770302
    [Abstract] [Full Text] [Related]

  • 3. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster.
    Sejerkilde M, Sørensen JG, Loeschcke V.
    J Insect Physiol; 2003 Aug; 49(8):719-26. PubMed ID: 12880651
    [Abstract] [Full Text] [Related]

  • 4. Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust.
    Wang HS, Zhou CS, Guo W, Kang L.
    Cryobiology; 2006 Oct; 53(2):206-17. PubMed ID: 16876151
    [Abstract] [Full Text] [Related]

  • 5. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).
    Štětina T, Koštál V, Korbelová J.
    PLoS One; 2015 Oct; 10(6):e0128976. PubMed ID: 26034990
    [Abstract] [Full Text] [Related]

  • 6. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua.
    Zheng X, Cheng W, Wang X, Lei C.
    Cryobiology; 2011 Dec; 63(3):164-9. PubMed ID: 21878325
    [Abstract] [Full Text] [Related]

  • 7. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster.
    Overgaard J, Sørensen JG, Petersen SO, Loeschcke V, Holmstrup M.
    J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133
    [Abstract] [Full Text] [Related]

  • 8. Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response.
    Shreve SM, Kelty JD, Lee RE.
    J Exp Biol; 2004 May; 207(Pt 11):1797-802. PubMed ID: 15107435
    [Abstract] [Full Text] [Related]

  • 9. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC, Partridge L.
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [Abstract] [Full Text] [Related]

  • 10. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF, Loeschcke V, Kristensen TN.
    PLoS One; 2015 Jan; 10(6):e0130307. PubMed ID: 26075607
    [Abstract] [Full Text] [Related]

  • 11. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster.
    Koštál V, Korbelová J, Rozsypal J, Zahradníčková H, Cimlová J, Tomčala A, Šimek P.
    PLoS One; 2011 Jan; 6(9):e25025. PubMed ID: 21957472
    [Abstract] [Full Text] [Related]

  • 12. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster.
    Czajka MC, Lee RE.
    J Exp Biol; 1990 Jan; 148():245-54. PubMed ID: 2106564
    [Abstract] [Full Text] [Related]

  • 13. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster.
    Pappas C, Hyde D, Bowler K, Loeschcke V, Sørensen JG.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):355-9. PubMed ID: 17208027
    [Abstract] [Full Text] [Related]

  • 14. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster.
    Gerken AR, Eller-Smith OC, Morgan TJ.
    J Therm Biol; 2018 Aug; 76():21-28. PubMed ID: 30143293
    [Abstract] [Full Text] [Related]

  • 15. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.
    Wang H, Lei Z, Li X, Oetting RD.
    Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Diapause in Drosophila melanogaster - Photoperiodicity, cold tolerance and metabolites.
    Anduaga AM, Nagy D, Costa R, Kyriacou CP.
    J Insect Physiol; 2018 Feb; 105():46-53. PubMed ID: 29339232
    [Abstract] [Full Text] [Related]

  • 18. Role of HSF activation for resistance to heat, cold and high-temperature knock-down.
    Nielsen MM, Overgaard J, Sørensen JG, Holmstrup M, Justesen J, Loeschcke V.
    J Insect Physiol; 2005 Dec; 51(12):1320-9. PubMed ID: 16169555
    [Abstract] [Full Text] [Related]

  • 19. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma.
    Udaka H, Ueda C, Goto SG.
    J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057
    [Abstract] [Full Text] [Related]

  • 20. [Responses of Arma chinensis cold tolerance to rapid cold hardening and underlying physiological mechanisms].
    Li XP, Song LW, Zhang HH, Chen YQ, Zuo TT, Wang J, Sun W.
    Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):791-7. PubMed ID: 22720627
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.