These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. Jeltsch A, Christ F, Fatemi M, Roth M. J Biol Chem; 1999 Jul 09; 274(28):19538-44. PubMed ID: 10391886 [Abstract] [Full Text] [Related]
3. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight. Aranda J, Roca M, Tuñón I. Org Biomol Chem; 2012 Jul 28; 10(28):5395-400. PubMed ID: 22699309 [Abstract] [Full Text] [Related]
4. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. Gowher H, Jeltsch A. J Mol Biol; 2000 Oct 13; 303(1):93-110. PubMed ID: 11021972 [Abstract] [Full Text] [Related]
5. Structure and function of DNA methyltransferases. Cheng X. Annu Rev Biophys Biomol Struct; 1995 Oct 13; 24():293-318. PubMed ID: 7663118 [Abstract] [Full Text] [Related]
7. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus. Pues H, Bleimling N, Holz B, Wölcke J, Weinhold E. Biochemistry; 1999 Feb 02; 38(5):1426-34. PubMed ID: 9931007 [Abstract] [Full Text] [Related]
9. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E. Nat Struct Biol; 2001 Feb 02; 8(2):121-5. PubMed ID: 11175899 [Abstract] [Full Text] [Related]
13. Identification of the binding site for the extrahelical target base in N6-adenine DNA methyltransferases by photo-cross-linking with duplex oligodeoxyribonucleotides containing 5-iodouracil at the target position. Holz B, Dank N, Eickhoff JE, Lipps G, Krauss G, Weinhold E. J Biol Chem; 1999 May 21; 274(21):15066-72. PubMed ID: 10329711 [Abstract] [Full Text] [Related]
14. Symmetry elements in DNA structure important for recognition/methylation by DNA [amino]-methyltransferases. Zinoviev VV, Yakishchik SI, Evdokimov AA, Malygin EG, Hattman S. Nucleic Acids Res; 2004 May 21; 32(13):3930-4. PubMed ID: 15280508 [Abstract] [Full Text] [Related]
15. M.TaqI: possible catalysis via cation-pi interactions in N-specific DNA methyltransferases. Schluckebier G, Labahn J, Granzin J, Saenger W. Biol Chem; 1998 May 21; 379(4-5):389-400. PubMed ID: 9628329 [Abstract] [Full Text] [Related]
17. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design. Roth M, Jeltsch A. Nucleic Acids Res; 2001 Aug 01; 29(15):3137-44. PubMed ID: 11470870 [Abstract] [Full Text] [Related]
18. Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. Bujnicki JM. In Silico Biol; 2001 Aug 01; 1(4):175-82. PubMed ID: 11479932 [Abstract] [Full Text] [Related]
19. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target. Lange C, Wild C, Trautner TA. EMBO J; 1996 Mar 15; 15(6):1443-50. PubMed ID: 8635477 [Abstract] [Full Text] [Related]