These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 11406105
21. ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocytosed vesicles. Birchmeier W, Lanz JH, Winterhalter KH, Conrad MJ. J Biol Chem; 1979 Sep 25; 254(18):9298-304. PubMed ID: 479196 [Abstract] [Full Text] [Related]
22. Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Chen JY, Brunauer LS, Chu FC, Helsel CM, Gedde MM, Huestis WH. Biochim Biophys Acta; 2003 Sep 22; 1616(1):95-105. PubMed ID: 14507423 [Abstract] [Full Text] [Related]
23. Role of the bilayer in the shape of the isolated erythrocyte membrane. Lange Y, Gough A, Steck TL. J Membr Biol; 1982 Sep 22; 69(2):113-23. PubMed ID: 7131536 [Abstract] [Full Text] [Related]
24. Binding of cyclosporine by erythrocytes: influence on cell shape and deformability. Reinhart WH. Eur J Clin Invest; 1993 Mar 22; 23(3):177-81. PubMed ID: 8477792 [Abstract] [Full Text] [Related]
25. Effect of tetracaine chlorhydrate on the mechanical properties of the erythrocyte membrane. Bazzoni G, Rasia M. Blood Cells Mol Dis; 2001 Mar 22; 27(2):391-8. PubMed ID: 11259160 [Abstract] [Full Text] [Related]
26. Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. Chasis JA, Mohandas N, Shohet SB. J Clin Invest; 1985 Jun 22; 75(6):1919-26. PubMed ID: 4008645 [Abstract] [Full Text] [Related]
27. ESR spectral changes induced by chlorpromazine in spin-labeled erythrocyte ghost membranes. Yamaguchi T, Watanabe S, Kimoto E. Biochim Biophys Acta; 1985 Nov 07; 820(2):157-64. PubMed ID: 2996599 [Abstract] [Full Text] [Related]
28. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Pestonjamasp KN, Mehta NG. Exp Cell Res; 1995 Jul 07; 219(1):74-81. PubMed ID: 7628552 [Abstract] [Full Text] [Related]
29. Differential dielectroscopic data on the relation of erythrocyte membrane skeleton to erythrocyte deformability and flicker. Ivanov IT, Paarvanova BK. Eur Biophys J; 2021 Jan 07; 50(1):69-86. PubMed ID: 33442752 [Abstract] [Full Text] [Related]
30. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. Takakuwa Y, Mohandas N. J Clin Invest; 1988 Aug 07; 82(2):394-400. PubMed ID: 3403710 [Abstract] [Full Text] [Related]
31. Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability. Arduini A, Rossi M, Mancinelli G, Belfiglio M, Scurti R, Radatti G, Shohet SB. Life Sci; 1990 Aug 07; 47(26):2395-400. PubMed ID: 2263166 [Abstract] [Full Text] [Related]
32. The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. Lange Y, Cutler HB, Steck TL. J Biol Chem; 1980 Oct 10; 255(19):9331-7. PubMed ID: 7410427 [Abstract] [Full Text] [Related]
33. Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane. Lange Y, Hadesman RA, Steck TL. J Cell Biol; 1982 Mar 10; 92(3):714-21. PubMed ID: 7085754 [Abstract] [Full Text] [Related]
34. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. Snyder LM, Fortier NL, Trainor J, Jacobs J, Leb L, Lubin B, Chiu D, Shohet S, Mohandas N. J Clin Invest; 1985 Nov 10; 76(5):1971-7. PubMed ID: 4056060 [Abstract] [Full Text] [Related]
35. Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca2+-ATPase from human erythrocyte. Plenge-Tellechea F, Domínguez-Solís CA, Díaz-Sánchez ÁG, Meléndez-Martínez D, Vargas-Medrano J, Sierra-Fonseca JA. J Bioenerg Biomembr; 2018 Feb 10; 50(1):59-69. PubMed ID: 29313294 [Abstract] [Full Text] [Related]
36. Role of membrane lipids and proteins in discocyte-echinocyte and -stomatocyte transformation of erythrocytes. Fujii T. Acta Biol Med Ger; 1981 Feb 10; 40(4-5):361-7. PubMed ID: 7315084 [Abstract] [Full Text] [Related]
37. Increased resistance to membrane deformation of shape-transformed human red blood cells. Chabanel A, Reinhart W, Chien S. Blood; 1987 Mar 10; 69(3):739-43. PubMed ID: 3814814 [Abstract] [Full Text] [Related]
38. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane. Hill JS, Sawyer WH, Howlett GJ, Wiley JS. Biochem J; 1982 Feb 01; 201(2):259-66. PubMed ID: 7082289 [Abstract] [Full Text] [Related]
39. Shape changes and deformability in human erythrocyte membranes. Schrier SL. J Lab Clin Med; 1987 Dec 01; 110(6):791-7. PubMed ID: 3500247 [Abstract] [Full Text] [Related]
40. The mechanism of chlorpromazine-induced red blood cell swelling. Cornelius AS, Reilly MP, Suzuki M, Asakura T, Horiuchi K. Gen Pharmacol; 1994 Jan 01; 25(1):205-10. PubMed ID: 8026707 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]