These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
356 related items for PubMed ID: 11414886
1. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. Santamaría-Holek I, Reguera D, Rubí JM. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051106. PubMed ID: 11414886 [Abstract] [Full Text] [Related]
2. Translational and rotational dynamics of colloidal particles in suspension: effect of shear. Hernández-Contreras M. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842 [Abstract] [Full Text] [Related]
3. Generalized hydrodynamics of a dilute suspension of finite-sized particles: dynamic viscosity. Hernández SI, Santamaría-Holek I, Mendoza CI, del Castillo LF. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051401. PubMed ID: 17279903 [Abstract] [Full Text] [Related]
4. Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation. Híjar H, Méndez-Bermúdez JG, Santamaría-Holek I. J Chem Phys; 2010 Feb 28; 132(8):084502. PubMed ID: 20192302 [Abstract] [Full Text] [Related]
5. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Híjar H. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb 28; 91(2):022139. PubMed ID: 25768490 [Abstract] [Full Text] [Related]
6. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ, Oberlack M. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May 28; 89(5):052145. PubMed ID: 25353777 [Abstract] [Full Text] [Related]
7. Thermodynamics and fractional Fokker-Planck equations. Sokolov IM. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May 28; 63(5 Pt 2):056111. PubMed ID: 11414965 [Abstract] [Full Text] [Related]
8. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD. Phys Rev E; 2018 May 28; 97(5-1):052144. PubMed ID: 29906998 [Abstract] [Full Text] [Related]
9. Nonequilibrium inertial dynamics of colloidal systems. Marini Bettolo Marconi U, Tarazona P. J Chem Phys; 2006 Apr 28; 124(16):164901. PubMed ID: 16674164 [Abstract] [Full Text] [Related]
10. Transport of matter and energy in a mesoscopic thermo-hydrodynamic approach. Madureira JR. J Chem Phys; 2004 Apr 22; 120(16):7526-31. PubMed ID: 15267666 [Abstract] [Full Text] [Related]
11. Local quasi-equilibrium description of slow relaxation systems. Santamaría-Holek I, Pérez-Madrid A, Rubí JM. J Chem Phys; 2004 Feb 08; 120(6):2818-23. PubMed ID: 15268428 [Abstract] [Full Text] [Related]
12. Levy diffusion in a force field, huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise. Vlad MO, Ross J, Schneider FW. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug 08; 62(2 Pt A):1743-63. PubMed ID: 11088636 [Abstract] [Full Text] [Related]
13. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Bazant MZ. Acc Chem Res; 2013 May 21; 46(5):1144-60. PubMed ID: 23520980 [Abstract] [Full Text] [Related]
14. Fast Hamiltonian chaos: Heat bath without thermodynamic limit. Riegert A, Just W, Baba N, Kantz H. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec 21; 76(6 Pt 2):066211. PubMed ID: 18233908 [Abstract] [Full Text] [Related]
15. The way from microscopic many-particle theory to macroscopic hydrodynamics. Haussmann R. J Phys Condens Matter; 2016 Mar 23; 28(11):113001. PubMed ID: 26902659 [Abstract] [Full Text] [Related]
16. Interacting Brownian dynamics in a nonequilibrium particle bath. Steffenoni S, Kroy K, Falasco G. Phys Rev E; 2016 Dec 23; 94(6-1):062139. PubMed ID: 28085452 [Abstract] [Full Text] [Related]
17. Energy representation for nonequilibrium brownian-like systems: steady states and fluctuation relations. Lev BI, Kiselev AD. Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep 23; 82(3 Pt 1):031101. PubMed ID: 21230019 [Abstract] [Full Text] [Related]