These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 11420689
1. AP-1 blockade inhibits the growth of normal and malignant breast cells. Ludes-Meyers JH, Liu Y, Muñoz-Medellin D, Hilsenbeck SG, Brown PH. Oncogene; 2001 May 17; 20(22):2771-80. PubMed ID: 11420689 [Abstract] [Full Text] [Related]
2. cFos is critical for MCF-7 breast cancer cell growth. Lu C, Shen Q, DuPré E, Kim H, Hilsenbeck S, Brown PH. Oncogene; 2005 Sep 29; 24(43):6516-24. PubMed ID: 16027729 [Abstract] [Full Text] [Related]
3. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C, Ge G, Schiff R, Hilsenbeck SG, Osborne CK, Brown PH. Oncogene; 2002 Oct 31; 21(50):7680-9. PubMed ID: 12400010 [Abstract] [Full Text] [Related]
4. Activation and inhibition of the AP-1 complex in human breast cancer cells. Chen TK, Smith LM, Gebhardt DK, Birrer MJ, Brown PH. Mol Carcinog; 1996 Mar 31; 15(3):215-26. PubMed ID: 8597534 [Abstract] [Full Text] [Related]
5. AP-1 blockade in breast cancer cells causes cell cycle arrest by suppressing G1 cyclin expression and reducing cyclin-dependent kinase activity. Liu Y, Lu C, Shen Q, Munoz-Medellin D, Kim H, Brown PH. Oncogene; 2004 Oct 28; 23(50):8238-46. PubMed ID: 15378019 [Abstract] [Full Text] [Related]
6. Breast cancer cells have lower activating protein 1 transcription factor activity than normal mammary epithelial cells. Smith LM, Birrer MJ, Stampfer MR, Brown PH. Cancer Res; 1997 Jul 15; 57(14):3046-54. PubMed ID: 9230221 [Abstract] [Full Text] [Related]
7. Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Zhao B, Yu W, Qian M, Simmons-Menchaca M, Brown P, Birrer MJ, Sanders BG, Kline K. Mol Carcinog; 1997 Jul 15; 19(3):180-90. PubMed ID: 9254885 [Abstract] [Full Text] [Related]
8. Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ. Oncogene; 2002 Oct 10; 21(46):7077-91. PubMed ID: 12370830 [Abstract] [Full Text] [Related]
9. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol. Chen AC, Guo X, Derguini F, Gudas LJ. Cancer Res; 1997 Oct 15; 57(20):4642-51. PubMed ID: 9377581 [Abstract] [Full Text] [Related]
10. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines. Liu L, Gudas LJ. J Cell Physiol; 2002 Nov 15; 193(2):244-52. PubMed ID: 12385002 [Abstract] [Full Text] [Related]
11. Reduction of human metastatic breast cancer cell aggressiveness on introduction of either form a or B of the progesterone receptor and then treatment with progestins. Sumida T, Itahana Y, Hamakawa H, Desprez PY. Cancer Res; 2004 Nov 01; 64(21):7886-92. PubMed ID: 15520195 [Abstract] [Full Text] [Related]
12. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R. Int J Oncol; 2004 Mar 01; 24(3):591-608. PubMed ID: 14767544 [Abstract] [Full Text] [Related]
13. Protein kinase C beta enhances growth and expression of cyclin D1 in human breast cancer cells. Li H, Weinstein IB. Cancer Res; 2006 Dec 01; 66(23):11399-408. PubMed ID: 17145886 [Abstract] [Full Text] [Related]
14. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P, Brown PH, Birrer MJ. Oncogene; 1999 Oct 28; 18(44):6063-70. PubMed ID: 10557095 [Abstract] [Full Text] [Related]
15. Complex regulation of the fibroblast growth factor-binding protein in MDA- MB-468 breast cancer cells by CCAAT/enhancer-binding protein beta. Kagan BL, Henke RT, Cabal-Manzano R, Stoica GE, Nguyen Q, Wellstein A, Riegel AT. Cancer Res; 2003 Apr 01; 63(7):1696-705. PubMed ID: 12670924 [Abstract] [Full Text] [Related]
16. Altered response to thyroid hormones by breast and ovarian cancer cells. Martinez MB, Ruan M, Fitzpatrick LA. Anticancer Res; 2000 Apr 01; 20(6B):4141-6. PubMed ID: 11205239 [Abstract] [Full Text] [Related]
17. [Angiogenic effect of interleukin-8 in breast cancer and its association with estrogen receptor]. Lin Y, Wang SM, Huang RP. Zhonghua Yi Xue Za Zhi; 2005 Jun 01; 85(20):1419-23. PubMed ID: 16029657 [Abstract] [Full Text] [Related]
18. Inhibition of proliferation of estrogen receptor‑positive MCF‑7 human breast cancer cells by tamoxifen through c‑Jun transcription factors. Xu Y, Zou ST, Zhu R, Li W, Gu CW, Wei SH, Xie JM, Wu HR. Mol Med Rep; 2013 Apr 01; 7(4):1283-7. PubMed ID: 23404426 [Abstract] [Full Text] [Related]
19. JunB negatively regulates AP-1 activity and cell proliferation of malignant mouse keratinocytes. Finch S, Joseloff E, Bowden T. J Cancer Res Clin Oncol; 2002 Jan 01; 128(1):3-10. PubMed ID: 11862466 [Abstract] [Full Text] [Related]
20. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Kang H, Mansel RE, Jiang WG. Int J Oncol; 2005 May 01; 26(5):1429-34. PubMed ID: 15809737 [Abstract] [Full Text] [Related] Page: [Next] [New Search]