These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


392 related items for PubMed ID: 11432925

  • 1. Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies.
    Tolay I, Erenoglu B, Römheld V, Braun HJ, Cakmak I.
    J Exp Bot; 2001 May; 52(358):1093-9. PubMed ID: 11432925
    [Abstract] [Full Text] [Related]

  • 2. Uptake and retranslocation of leaf-applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats.
    Cakmak I, Welch RM, Hart J, Norvell WA, Oztürk L, Kochian LV.
    J Exp Bot; 2000 Feb; 51(343):221-6. PubMed ID: 10938828
    [Abstract] [Full Text] [Related]

  • 3. Zinc deficiency-induced phytosiderophore release by the Triticaceae is not consistently expressed in solution culture.
    Pedler JF, Parker DR, Crowley DE.
    Planta; 2000 Jun; 211(1):120-6. PubMed ID: 10923712
    [Abstract] [Full Text] [Related]

  • 4. Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity.
    Daneshbakhsh B, Khoshgoftarmanesh AH, Shariatmadari H, Cakmak I.
    J Plant Physiol; 2013 Jan 01; 170(1):41-6. PubMed ID: 23122914
    [Abstract] [Full Text] [Related]

  • 5. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity.
    Iehisa JC, Takumi S.
    Genes Genet Syst; 2012 Jan 01; 87(1):9-18. PubMed ID: 22531790
    [Abstract] [Full Text] [Related]

  • 6. Genetic variability of spelt factor gene in Triticum and Aegilops species.
    Vavilova V, Konopatskaia I, Blinov A, Kondratenko EY, Kruchinina YV, Goncharov NP.
    BMC Plant Biol; 2020 Oct 14; 20(Suppl 1):310. PubMed ID: 33050874
    [Abstract] [Full Text] [Related]

  • 7. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum).
    Petersen G, Seberg O, Yde M, Berthelsen K.
    Mol Phylogenet Evol; 2006 Apr 14; 39(1):70-82. PubMed ID: 16504543
    [Abstract] [Full Text] [Related]

  • 8. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats.
    Giles RJ, Brown TA.
    Theor Appl Genet; 2006 May 14; 112(8):1563-72. PubMed ID: 16568284
    [Abstract] [Full Text] [Related]

  • 9. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB, Ozturk L, Gokmen OO, Römheld V, Cakmak I.
    Physiol Plant; 2011 Jul 14; 142(3):287-96. PubMed ID: 21338370
    [Abstract] [Full Text] [Related]

  • 10. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum x Aegilops tauschii crosses.
    Lage J, Skovmand B, Andersen SB.
    J Econ Entomol; 2003 Feb 14; 96(1):202-6. PubMed ID: 12650363
    [Abstract] [Full Text] [Related]

  • 11. Evaluation of synthetic hexaploid wheats (derivative of durum wheats and Aegilops tauschii accessions) for studying genetic diversity using randomly amplified polymorphic DNA (RAPD) markers.
    Shakeel M, Ilyas M, Kazi M.
    Mol Biol Rep; 2013 Jan 14; 40(1):21-6. PubMed ID: 23192610
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA.
    Zhang W, Qu J, Gu H, Gao W, Liu M, Chen J, Chen Z.
    Theor Appl Genet; 2002 May 14; 104(6-7):1099-1106. PubMed ID: 12582618
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The origin of the B-genome of bread wheat (Triticum aestivum L.).
    Haider N.
    Genetika; 2013 Mar 14; 49(3):303-14. PubMed ID: 23755530
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Phenotypic and molecular characterization of Hessian fly resistance in diploid wheat, Aegilops tauschii.
    Nemacheck JA, Schemerhorn BJ, Scofield SR, Subramanyam S.
    BMC Plant Biol; 2019 Oct 22; 19(1):439. PubMed ID: 31640550
    [Abstract] [Full Text] [Related]

  • 19. Root exudation of phytosiderophores from soil-grown wheat.
    Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M.
    New Phytol; 2014 Sep 22; 203(4):1161-1174. PubMed ID: 24890330
    [Abstract] [Full Text] [Related]

  • 20. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.
    Li PF, Cheng ZG, Ma BL, Palta JA, Kong HY, Mo F, Wang JY, Zhu Y, Lv GC, Batool A, Bai X, Li FM, Xiong YC.
    PLoS One; 2014 Sep 22; 9(9):e95825. PubMed ID: 25181037
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.