These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 11433601
21. Predicting outcome in children with severe acute respiratory failure treated with high-frequency ventilation. Sarnaik AP, Meert KL, Pappas MD, Simpson PM, Lieh-Lai MW, Heidemann SM. Crit Care Med; 1996 Aug; 24(8):1396-402. PubMed ID: 8706497 [Abstract] [Full Text] [Related]
22. Beneficial effects of chest tube drainage of pleural effusion in acute respiratory failure refractory to positive end-expiratory pressure ventilation. Talmor M, Hydo L, Gershenwald JG, Barie PS. Surgery; 1998 Feb; 123(2):137-43. PubMed ID: 9481398 [Abstract] [Full Text] [Related]
23. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Chu EK, Whitehead T, Slutsky AS. Crit Care Med; 2004 Jan; 32(1):168-74. PubMed ID: 14707576 [Abstract] [Full Text] [Related]
24. High frequency positive pressure ventilation (HFPPV) in a newborn infant with ruptured lungs. Wren WS. Br J Anaesth; 1983 Jun; 55(6):575-80. PubMed ID: 6344894 [Abstract] [Full Text] [Related]
25. Partial liquid ventilation combined with two different gas ventilatory strategies in acute lung injury in piglets: Effects on gas exchange, respiratory mechanics, and hemodynamics. Zobel G, Rödl S, Urlesberger B, Knez I, Dacar D. J Pediatr Surg; 2003 Apr; 38(4):527-33. PubMed ID: 12677559 [Abstract] [Full Text] [Related]
26. Partial liquid ventilation versus conventional mechanical ventilation with high PEEP and moderate tidal volume in acute respiratory failure in piglets. Rödl S, Urlesberger B, Knez I, Dacar D, Zobel G. Pediatr Res; 2002 Aug; 52(2):225-32. PubMed ID: 12149500 [Abstract] [Full Text] [Related]
27. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms. Tugrul S, Akinci O, Ozcan PE, Ince S, Esen F, Telci L, Akpir K, Cakar N. Crit Care Med; 2003 Mar; 31(3):738-44. PubMed ID: 12626977 [Abstract] [Full Text] [Related]
28. Noninvasive positive pressure ventilation in trauma patients with acute respiratory failure. Beltrame F, Lucangelo U, Gregori D, Gregoretti C. Monaldi Arch Chest Dis; 1999 Apr; 54(2):109-14. PubMed ID: 10394822 [Abstract] [Full Text] [Related]
29. High-frequency percussive ventilation compared with conventional mechanical ventilation. Gallagher TJ, Boysen PG, Davidson DD, Miller JR, Leven SB. Crit Care Med; 1989 Apr; 17(4):364-6. PubMed ID: 2495212 [Abstract] [Full Text] [Related]
30. Extracorporeal life support for pediatric respiratory failure: predictors of survival from 220 patients. Moler FW, Palmisano J, Custer JR. Crit Care Med; 1993 Oct; 21(10):1604-11. PubMed ID: 8403974 [Abstract] [Full Text] [Related]
31. Use of high-frequency jet ventilation in neonates with hypoxemia refractory to high-frequency oscillatory ventilation. Friedlich P, Subramanian N, Sebald M, Noori S, Seri I. J Matern Fetal Neonatal Med; 2003 Jun; 13(6):398-402. PubMed ID: 12962265 [Abstract] [Full Text] [Related]
32. Pressure control inverse ratio ventilation in the treatment of adult respiratory distress syndrome in patients with blunt chest trauma. McCarthy MC, Cline AL, Lemmon GW, Peoples JB. Am Surg; 1999 Nov; 65(11):1027-30. PubMed ID: 10551750 [Abstract] [Full Text] [Related]
33. Optimizing Positive End-Expiratory Pressure Based on Intra-Abdominal Pressure in Patients with Acute Respiratory Failure. Hancı P, Demir ET, Şekerci B, İnal V. Niger J Clin Pract; 2024 Aug 01; 27(8):1033-1037. PubMed ID: 39212442 [Abstract] [Full Text] [Related]
34. The effect of PEEP on oxygenating capacity in acute respiratory failure with sepsis. Cotev S, Perel A, Katzenelson R, Eimerl D. Crit Care Med; 1976 Aug 01; 4(4):186-92. PubMed ID: 780054 [Abstract] [Full Text] [Related]
35. Oxygenation advisor recommends appropriate positive end expiratory pressure and FIO2 settings: retrospective validation study. Banner MJ, Euliano NR, Grooms D, Daniel Martin A, Al-Rawas N, Gabrielli A. J Clin Monit Comput; 2014 Apr 01; 28(2):203-10. PubMed ID: 24136193 [Abstract] [Full Text] [Related]
36. A randomized controlled trial of positive end-expiratory pressure on pulmonary oxygenation and biventricular function in esophageal cancer patients receiving one-lung ventilation under a lower FiO2. Li P, Gu L, Bian Q, Xu Z, Jiao D, Wang L. J Gastrointest Oncol; 2022 Oct 01; 13(5):2105-2114. PubMed ID: 36388664 [Abstract] [Full Text] [Related]
37. High-frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. Rizkalla NA, Dominick CL, Fitzgerald JC, Thomas NJ, Yehya N. J Crit Care; 2014 Apr 01; 29(2):314.e1-7. PubMed ID: 24332991 [Abstract] [Full Text] [Related]
38. Intermittent positive pressure ventilation with either positive end-expiratory pressure or high frequency jet ventilation (HFJV), or HFJV alone in human acute respiratory failure. Brichant JF, Rouby JJ, Viars P. Anesth Analg; 1986 Nov 01; 65(11):1135-42. PubMed ID: 3094403 [Abstract] [Full Text] [Related]
39. Determination of Lung Volume and Hemodynamic Changes During High-Frequency Ventilation Recruitment in Preterm Neonates With Respiratory Distress Syndrome. Tana M, Polglase GR, Cota F, Tirone C, Aurilia C, Lio A, Ricci C, Romagnoli C, Vento G. Crit Care Med; 2015 Aug 01; 43(8):1685-91. PubMed ID: 25803651 [Abstract] [Full Text] [Related]
40. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. Crit Care Med; 2006 May 01; 34(5):1311-8. PubMed ID: 16557151 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]