These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 11441150

  • 41. Toward a detailed computational model for the mammalian circadian clock.
    Leloup JC, Goldbeter A.
    Proc Natl Acad Sci U S A; 2003 Jun 10; 100(12):7051-6. PubMed ID: 12775757
    [Abstract] [Full Text] [Related]

  • 42. The role of phosphorylation and degradation of hPER protein oscillation in normal human fibroblasts.
    Miyazaki K, Mezaki M, Ishida N.
    Novartis Found Symp; 2003 Jun 10; 253():238-48; discussion 249. PubMed ID: 14712925
    [Abstract] [Full Text] [Related]

  • 43. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.
    Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T.
    Genes Cells; 2000 Sep 10; 5(9):725-38. PubMed ID: 10971654
    [Abstract] [Full Text] [Related]

  • 44. [Protein phosphorylation-dependent regulation of circadian timekeeping].
    Doi M, Okano T.
    Seikagaku; 2005 Feb 10; 77(2):125-9. PubMed ID: 15786737
    [No Abstract] [Full Text] [Related]

  • 45. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity.
    Emery P, So WV, Kaneko M, Hall JC, Rosbash M.
    Cell; 1998 Nov 25; 95(5):669-79. PubMed ID: 9845369
    [Abstract] [Full Text] [Related]

  • 46. Indication of circadian oscillations in the rat pancreas.
    Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E.
    FEBS Lett; 2004 Apr 23; 564(1-2):91-6. PubMed ID: 15094047
    [Abstract] [Full Text] [Related]

  • 47. Molecular analysis of mammalian circadian rhythms.
    Reppert SM, Weaver DR.
    Annu Rev Physiol; 2001 Apr 23; 63():647-76. PubMed ID: 11181971
    [Abstract] [Full Text] [Related]

  • 48. Requirement of mammalian Timeless for circadian rhythmicity.
    Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU.
    Science; 2003 Oct 17; 302(5644):439-42. PubMed ID: 14564007
    [Abstract] [Full Text] [Related]

  • 49. Central and peripheral circadian oscillator mechanisms in flies and mammals.
    Glossop NR, Hardin PE.
    J Cell Sci; 2002 Sep 01; 115(Pt 17):3369-77. PubMed ID: 12154068
    [Abstract] [Full Text] [Related]

  • 50. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock.
    Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M, Hoeijmakers JH, van der Horst GT.
    Science; 1999 Dec 24; 286(5449):2531-4. PubMed ID: 10617474
    [Abstract] [Full Text] [Related]

  • 51. Circadian rhythms. Carbon monoxide and clocks.
    Boehning D, Snyder SH.
    Science; 2002 Dec 20; 298(5602):2339-40. PubMed ID: 12493901
    [No Abstract] [Full Text] [Related]

  • 52. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U.
    Genes Dev; 2000 Dec 01; 14(23):2950-61. PubMed ID: 11114885
    [Abstract] [Full Text] [Related]

  • 53. Drosophila CRYPTOCHROME is a circadian transcriptional repressor.
    Collins B, Mazzoni EO, Stanewsky R, Blau J.
    Curr Biol; 2006 Mar 07; 16(5):441-9. PubMed ID: 16527739
    [Abstract] [Full Text] [Related]

  • 54. Synchronization of cellular clocks in the suprachiasmatic nucleus.
    Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H.
    Science; 2003 Nov 21; 302(5649):1408-12. PubMed ID: 14631044
    [Abstract] [Full Text] [Related]

  • 55. Circadian rhythms. Clocks on the brain.
    Green CB, Menaker M.
    Science; 2003 Jul 18; 301(5631):319-20. PubMed ID: 12843400
    [No Abstract] [Full Text] [Related]

  • 56. Cellular and molecular basis of circadian timing in mammals.
    Reppert SM.
    Semin Perinatol; 2000 Aug 18; 24(4):243-6. PubMed ID: 10975430
    [Abstract] [Full Text] [Related]

  • 57. Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization.
    Schoenhard JA, Eren M, Johnson CH, Vaughan DE.
    Am J Physiol Cell Physiol; 2002 Jul 18; 283(1):C103-14. PubMed ID: 12055078
    [Abstract] [Full Text] [Related]

  • 58. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation.
    Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K, Ishida N, Anzai M, Mitani T, Kato H, Kishigami S, Saeki K, Hosoi Y, Iritani A, Matsumoto K.
    Biol Reprod; 2009 Mar 18; 80(3):473-83. PubMed ID: 19020302
    [Abstract] [Full Text] [Related]

  • 59. A model of the cell-autonomous mammalian circadian clock.
    Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ.
    Proc Natl Acad Sci U S A; 2009 Jul 07; 106(27):11107-12. PubMed ID: 19549830
    [Abstract] [Full Text] [Related]

  • 60. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
    Etchegaray JP, Lee C, Wade PA, Reppert SM.
    Nature; 2003 Jan 09; 421(6919):177-82. PubMed ID: 12483227
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.