These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1021 related items for PubMed ID: 11454720
1. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Yang J, Fizazi K, Peleg S, Sikes CR, Raymond AK, Jamal N, Hu M, Olive M, Martinez LA, Wood CG, Logothetis CJ, Karsenty G, Navone NM. Cancer Res; 2001 Jul 15; 61(14):5652-9. PubMed ID: 11454720 [Abstract] [Full Text] [Related]
2. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Fizazi K, Yang J, Peleg S, Sikes CR, Kreimann EL, Daliani D, Olive M, Raymond KA, Janus TJ, Logothetis CJ, Karsenty G, Navone NM. Clin Cancer Res; 2003 Jul 15; 9(7):2587-97. PubMed ID: 12855635 [Abstract] [Full Text] [Related]
3. Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism. Schulze J, Albers J, Baranowsky A, Keller J, Spiro A, Streichert T, Zustin J, Amling M, Schinke T. Bone; 2010 Feb 15; 46(2):524-33. PubMed ID: 19796718 [Abstract] [Full Text] [Related]
4. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Lin DL, Tarnowski CP, Zhang J, Dai J, Rohn E, Patel AH, Morris MD, Keller ET. Prostate; 2001 May 15; 47(3):212-21. PubMed ID: 11351351 [Abstract] [Full Text] [Related]
5. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, Keller ET. Cancer Res; 2005 Dec 01; 65(23):10921-9. PubMed ID: 16322239 [Abstract] [Full Text] [Related]
6. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. Lee MH, Javed A, Kim HJ, Shin HI, Gutierrez S, Choi JY, Rosen V, Stein JL, van Wijnen AJ, Stein GS, Lian JB, Ryoo HM. J Cell Biochem; 1999 Apr 01; 73(1):114-25. PubMed ID: 10088730 [Abstract] [Full Text] [Related]
7. Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. Viereck V, Siggelkow H, Tauber S, Raddatz D, Schutze N, Hüfner M. J Cell Biochem; 2002 Apr 01; 86(2):348-56. PubMed ID: 12112004 [Abstract] [Full Text] [Related]
8. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. Shui C, Spelsberg TC, Riggs BL, Khosla S. J Bone Miner Res; 2003 Feb 01; 18(2):213-21. PubMed ID: 12568398 [Abstract] [Full Text] [Related]
9. TabBO: a model reflecting common molecular features of androgen-independent prostate cancer. Navone NM, Rodriquez-Vargas MC, Benedict WF, Troncoso P, McDonnell TJ, Zhou JH, Luthra R, Logothetis CJ. Clin Cancer Res; 2000 Mar 01; 6(3):1190-7. PubMed ID: 10741751 [Abstract] [Full Text] [Related]
10. Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. Siggelkow H, Rebenstorff K, Kurre W, Niedhart C, Engel I, Schulz H, Atkinson MJ, Hüfner M. J Cell Biochem; 1999 Oct 01; 75(1):22-35. PubMed ID: 10462701 [Abstract] [Full Text] [Related]
15. Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7. Gu K, Zhang L, Jin T, Rutherford RB. Cells Tissues Organs; 2004 Oct 01; 176(1-3):28-40. PubMed ID: 14745233 [Abstract] [Full Text] [Related]