These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 11457015

  • 1. Sensitivity of tyrosyl radical g-values to changes in protein structure: a high-field EPR study of mutants of ribonucleotide reductase.
    Un S, Gerez C, Elleingand E, Fontecave M.
    J Am Chem Soc; 2001 Apr 04; 123(13):3048-54. PubMed ID: 11457015
    [Abstract] [Full Text] [Related]

  • 2. EPR studies on a stable sulfinyl radical observed in the iron-oxygen-reconstituted Y177F/I263C protein R2 double mutant of ribonucleotide reductase from mouse.
    Adrait A, Ohrström M, Barra AL, Thelander L, Gräslund A.
    Biochemistry; 2002 May 21; 41(20):6510-6. PubMed ID: 12009915
    [Abstract] [Full Text] [Related]

  • 3. Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-A x-ray data.
    Högbom M, Galander M, Andersson M, Kolberg M, Hofbauer W, Lassmann G, Nordlund P, Lendzian F.
    Proc Natl Acad Sci U S A; 2003 Mar 18; 100(6):3209-14. PubMed ID: 12624184
    [Abstract] [Full Text] [Related]

  • 4. Tryptophan and tyrosine radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz.
    Bleifuss G, Kolberg M, Pötsch S, Hofbauer W, Bittl R, Lubitz W, Gräslund A, Lassmann G, Lendzian F.
    Biochemistry; 2001 Dec 18; 40(50):15362-8. PubMed ID: 11735419
    [Abstract] [Full Text] [Related]

  • 5. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy.
    Meichsner SL, Kutin Y, Kasanmascheff M.
    Angew Chem Int Ed Engl; 2021 Aug 23; 60(35):19155-19161. PubMed ID: 33844392
    [Abstract] [Full Text] [Related]

  • 6. The iron-oxygen reconstitution reaction in protein R2-Tyr-177 mutants of mouse ribonucleotide reductase. Epr and electron nuclear double resonance studies on a new transient tryptophan radical.
    Pötsch S, Lendzian F, Ingemarson R, Hörnberg A, Thelander L, Lubitz W, Lassmann G, Gräslund A.
    J Biol Chem; 1999 Jun 18; 274(25):17696-704. PubMed ID: 10364210
    [Abstract] [Full Text] [Related]

  • 7. Orientation of the tyrosyl radical in Salmonella typhimurium class Ib ribonucleotide reductase determined by high field EPR of R2F single crystals.
    Galander M, Uppsten M, Uhlin U, Lendzian F.
    J Biol Chem; 2006 Oct 20; 281(42):31743-52. PubMed ID: 16854982
    [Abstract] [Full Text] [Related]

  • 8. A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H. Combined x-ray diffraction and EPR/ENDOR studies.
    Kolberg M, Logan DT, Bleifuss G, Pötsch S, Sjöberg BM, Gräslund A, Lubitz W, Lassmann G, Lendzian F.
    J Biol Chem; 2005 Mar 25; 280(12):11233-46. PubMed ID: 15634667
    [Abstract] [Full Text] [Related]

  • 9. Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters.
    Svistunenko DA, Jones GA.
    Phys Chem Chem Phys; 2009 Aug 21; 11(31):6600-13. PubMed ID: 19639135
    [Abstract] [Full Text] [Related]

  • 10. EPR study of the mixed-valent diiron sites in mouse and herpes simplex virus ribonucleotide reductases. Effect of the tyrosyl radical on structure and reactivity of the diferric center.
    Davydov RM, Davydov A, Ingemarson R, Thelander L, Ehrenberg A, Gräslund A.
    Biochemistry; 1997 Jul 29; 36(30):9093-100. PubMed ID: 9230041
    [Abstract] [Full Text] [Related]

  • 11. New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant protein R2 F208Y of Escherichia coli ribonucleotide reductase.
    Liu A, Sahlin M, Pötsch S, Sjöberg BM, Gräslund A.
    Biochem Biophys Res Commun; 1998 May 29; 246(3):740-5. PubMed ID: 9618282
    [Abstract] [Full Text] [Related]

  • 12. The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket.
    Liu A, Pötsch S, Davydov A, Barra AL, Rubin H, Gräslund A.
    Biochemistry; 1998 Nov 17; 37(46):16369-77. PubMed ID: 9819229
    [Abstract] [Full Text] [Related]

  • 13. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy.
    Lendzian F.
    Biochim Biophys Acta; 2005 Feb 25; 1707(1):67-90. PubMed ID: 15721607
    [Abstract] [Full Text] [Related]

  • 14. Protein-tyrosyl radical interactions in photosystem II studied by electron spin resonance and electron nuclear double resonance spectroscopy: comparison with ribonucleotide reductase and in vitro tyrosine.
    Hoganson CW, Babcock GT.
    Biochemistry; 1992 Dec 01; 31(47):11874-80. PubMed ID: 1332777
    [Abstract] [Full Text] [Related]

  • 15. Efficient growth inhibition of Bacillus anthracis by knocking out the ribonucleotide reductase tyrosyl radical.
    Torrents E, Sahlin M, Biglino D, Gräslund A, Sjöberg BM.
    Proc Natl Acad Sci U S A; 2005 Dec 13; 102(50):17946-51. PubMed ID: 16322104
    [Abstract] [Full Text] [Related]

  • 16. Effect of the tyrosyl radical on the reduction and structure of the Escherichia coli ribonucleotide reductase protein R2 diferric site as probed by EPR on the mixed-valent state.
    Davydov R, Sahlin M, Kuprin S, Gräslund A, Ehrenberg A.
    Biochemistry; 1996 Apr 30; 35(17):5571-6. PubMed ID: 8611548
    [Abstract] [Full Text] [Related]

  • 17. High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase.
    Denysenkov VP, Prisner TF, Stubbe J, Bennati M.
    Proc Natl Acad Sci U S A; 2006 Sep 05; 103(36):13386-90. PubMed ID: 16938868
    [Abstract] [Full Text] [Related]

  • 18. Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography.
    Tong W, Burdi D, Riggs-Gelasco P, Chen S, Edmondson D, Huynh BH, Stubbe J, Han S, Arvai A, Tainer J.
    Biochemistry; 1998 Apr 28; 37(17):5840-8. PubMed ID: 9558317
    [Abstract] [Full Text] [Related]

  • 19. High-frequency (140-GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast.
    Bar G, Bennati M, Nguyen HH, Ge J, Stubbe JA, Griffin RG.
    J Am Chem Soc; 2001 Apr 18; 123(15):3569-76. PubMed ID: 11472128
    [Abstract] [Full Text] [Related]

  • 20. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase.
    Ravichandran K, Minnihan EC, Lin Q, Yokoyama K, Taguchi AT, Shao J, Nocera DG, Stubbe J.
    Biochemistry; 2017 Feb 14; 56(6):856-868. PubMed ID: 28103007
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.