These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 11459102
1. Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Pogacnik L, Franko M. Biosens Bioelectron; 1999 Jun 30; 14(6):569-78. PubMed ID: 11459102 [Abstract] [Full Text] [Related]
2. Development of an EnFET for the detection of organophosphorous and carbamate insecticides. Flores F, Artigas J, Marty JL, Valdés F. Anal Bioanal Chem; 2003 Jun 30; 376(4):476-80. PubMed ID: 12748754 [Abstract] [Full Text] [Related]
3. Flow-injection detector incorporating a screen-printed disposable amperometric biosensor for monitoring organophosphate pesticides. Rippeth JJ, Gibson TD, Hart JP, Hartley IC, Nelson G. Analyst; 1997 Nov 30; 122(11):1425-9. PubMed ID: 9474819 [Abstract] [Full Text] [Related]
4. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Cesarino I, Moraes FC, Lanza MR, Machado SA. Food Chem; 2012 Dec 01; 135(3):873-9. PubMed ID: 22953799 [Abstract] [Full Text] [Related]
5. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Hossain SM, Luckham RE, McFadden MJ, Brennan JD. Anal Chem; 2009 Nov 01; 81(21):9055-64. PubMed ID: 19788278 [Abstract] [Full Text] [Related]
6. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Bordbar MM, Nguyen TA, Arduini F, Bagheri H. Mikrochim Acta; 2020 Oct 21; 187(11):621. PubMed ID: 33084996 [Abstract] [Full Text] [Related]
7. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Pogacnik L, Franko M. Biosens Bioelectron; 2003 Jan 21; 18(1):1-9. PubMed ID: 12445439 [Abstract] [Full Text] [Related]
8. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS. Talanta; 2014 Sep 21; 127():9-17. PubMed ID: 24913851 [Abstract] [Full Text] [Related]
9. Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection. Roepcke CB, Muench SB, Schulze H, Bachmann TT, Schmid RD, Hauer B. J Agric Food Chem; 2010 Aug 11; 58(15):8748-56. PubMed ID: 20614938 [Abstract] [Full Text] [Related]
10. Disposable biosensor test for organophosphate and carbamate insecticides in milk. Zhang Y, Muench SB, Schulze H, Perz R, Yang B, Schmid RD, Bachmann TT. J Agric Food Chem; 2005 Jun 29; 53(13):5110-5. PubMed ID: 15969483 [Abstract] [Full Text] [Related]
11. High-performance liquid chromatography multiresidue method for the determination of N-methyl carbamates in fruit and vegetable juices. Sánchez-Brunete C, Albero B, Tadeo JL. J Food Prot; 2004 Nov 29; 67(11):2565-9. PubMed ID: 15553643 [Abstract] [Full Text] [Related]
12. Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor. Mishra RK, Istamboulie G, Bhand S, Marty JL. Anal Chim Acta; 2012 Oct 01; 745():64-9. PubMed ID: 22938607 [Abstract] [Full Text] [Related]
14. Facile and Low-Cost SPE Modification Towards Ultra-Sensitive Organophosphorus and Carbamate Pesticide Detection in Olive Oil. Soulis D, Trigazi M, Tsekenis G, Chandrinou C, Klinakis A, Zergioti I. Molecules; 2020 Oct 28; 25(21):. PubMed ID: 33126549 [Abstract] [Full Text] [Related]
15. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. Carabias Martinez R, Rodriguez Gonzalo E, Amigo Moran MJ, Hernandez Mendez J. J Chromatogr; 1992 Aug 21; 607(1):37-45. PubMed ID: 1447359 [Abstract] [Full Text] [Related]
16. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Jin L, Hao Z, Zheng Q, Chen H, Zhu L, Wang C, Liu X, Lu C. Anal Chim Acta; 2020 Mar 01; 1100():215-224. PubMed ID: 31987143 [Abstract] [Full Text] [Related]
17. N-methyl carbamate concentrations and dietary intake estimates for apple and grape juices available on the retail market in Canada. Rawn DF, Roscoe V, Krakalovich T, Hanson C. Food Addit Contam; 2004 Jun 01; 21(6):555-63. PubMed ID: 15204533 [Abstract] [Full Text] [Related]
18. Survey of carbamate and organophosphorous pesticide export from a south Florida (U.S.A.) agricultural watershed: implications of sampling frequency on ecological risk estimation. Wilsont PC, Foos JF. Environ Toxicol Chem; 2006 Nov 01; 25(11):2847-52. PubMed ID: 17089706 [Abstract] [Full Text] [Related]
19. A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Mishra RK, Dominguez RB, Bhand S, Muñoz R, Marty JL. Biosens Bioelectron; 2012 Feb 15; 32(1):56-61. PubMed ID: 22221795 [Abstract] [Full Text] [Related]
20. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MA. J Chromatogr A; 2008 Nov 21; 1211(1-2):33-42. PubMed ID: 18849040 [Abstract] [Full Text] [Related] Page: [Next] [New Search]