These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1807 related items for PubMed ID: 11469892

  • 1. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE.
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [Abstract] [Full Text] [Related]

  • 2. Adrenergic antagonists reduce lactic acidosis in response to hemorrhagic shock.
    Luchette FA, Robinson BR, Friend LA, McCarter F, Frame SB, James JH.
    J Trauma; 1999 May; 46(5):873-80. PubMed ID: 10338406
    [Abstract] [Full Text] [Related]

  • 3. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE.
    J Clin Invest; 1996 Nov 15; 98(10):2388-97. PubMed ID: 8941658
    [Abstract] [Full Text] [Related]

  • 4. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin.
    James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, Friend LA, Shelly DA, Paul RJ, Fischer JE.
    Am J Physiol; 1999 Jul 15; 277(1):E176-86. PubMed ID: 10409142
    [Abstract] [Full Text] [Related]

  • 5. Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock.
    Luchette FA, Friend LA, Brown CC, Upputuri RK, James JH.
    J Trauma; 1998 May 15; 44(5):796-801; discussion 801-3. PubMed ID: 9603080
    [Abstract] [Full Text] [Related]

  • 6. Hypoxia is not the sole cause of lactate production during shock.
    Luchette FA, Jenkins WA, Friend LA, Su C, Fischer JE, James JH.
    J Trauma; 2002 Mar 15; 52(3):415-9. PubMed ID: 11901313
    [Abstract] [Full Text] [Related]

  • 7. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT, Nielsen OB, Clausen T.
    Exp Physiol; 2008 Dec 15; 93(12):1249-62. PubMed ID: 18586859
    [Abstract] [Full Text] [Related]

  • 8. Sepsis increases skeletal muscle sodium, potassium-adenosinetriphosphatase activity without affecting messenger RNA or protein levels.
    O'Brien WJ, Lingrel JB, Fischer JE, Hasselgren PO.
    J Am Coll Surg; 1996 Nov 15; 183(5):471-9. PubMed ID: 8912616
    [Abstract] [Full Text] [Related]

  • 9. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states.
    Levy B, Desebbe O, Montemont C, Gibot S.
    Shock; 2008 Oct 15; 30(4):417-21. PubMed ID: 18323749
    [Abstract] [Full Text] [Related]

  • 10. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ, Connett RJ, Drucker WR.
    Surgery; 1985 Oct 15; 98(4):625-31. PubMed ID: 4049240
    [Abstract] [Full Text] [Related]

  • 11. Sublytic complement attack increases intracellular sodium in rat skeletal muscle.
    Okamoto K, Wang W, Rounds J, Chambers E, Jacobs DO.
    J Surg Res; 2000 May 15; 90(2):174-82. PubMed ID: 10792960
    [Abstract] [Full Text] [Related]

  • 12. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis.
    McCarter FD, Nierman SR, James JH, Wang L, King JK, Friend LA, Fischer JE.
    Life Sci; 2002 Mar 08; 70(16):1875-88. PubMed ID: 12005173
    [Abstract] [Full Text] [Related]

  • 13. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE.
    Lancet; 2002 Mar 08; 365(9462):871-5. PubMed ID: 15752531
    [Abstract] [Full Text] [Related]

  • 14. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ, Gissel H, Clausen T.
    J Physiol; 2003 Mar 01; 547(Pt 2):567-80. PubMed ID: 12562912
    [Abstract] [Full Text] [Related]

  • 15. K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite.
    Hawke TJ, Willmets RG, Lindinger MI.
    Can J Physiol Pharmacol; 1999 Nov 01; 77(11):835-43. PubMed ID: 10593655
    [Abstract] [Full Text] [Related]

  • 16. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise.
    Galuska D, Kotova O, Barrès R, Chibalina D, Benziane B, Chibalin AV.
    Am J Physiol Endocrinol Metab; 2009 Jul 01; 297(1):E38-49. PubMed ID: 19366873
    [Abstract] [Full Text] [Related]

  • 17. Effect of repeated +Gz exposures on energy metabolism and some ion contents in brain tissues of rats.
    Sun XQ, Zhang LF, Wu XY, Jiang SZ.
    Aviat Space Environ Med; 2001 May 01; 72(5):422-6. PubMed ID: 11346006
    [Abstract] [Full Text] [Related]

  • 18. An integrative, in situ approach to examining K+ flux in resting skeletal muscle.
    Lindinger MI, Hawke TJ, Vickery L, Bradford L, Lipskie SL.
    Can J Physiol Pharmacol; 2001 Dec 01; 79(12):996-1006. PubMed ID: 11824943
    [Abstract] [Full Text] [Related]

  • 19. Ouabain stimulates unidirectional and net potassium efflux in resting mammalian skeletal muscle.
    Hawke TJ, Lessard S, Vickery L, Lipskie SL, Lindinger MI.
    Can J Physiol Pharmacol; 2001 Nov 01; 79(11):932-41. PubMed ID: 11760095
    [Abstract] [Full Text] [Related]

  • 20. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T, Gissel H.
    Acta Physiol Scand; 2005 Mar 01; 183(3):263-71. PubMed ID: 15743386
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 91.