These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 11477106

  • 1. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway.
    Hirano Y, Yoshida M, Shimizu M, Sato R.
    J Biol Chem; 2001 Sep 28; 276(39):36431-7. PubMed ID: 11477106
    [Abstract] [Full Text] [Related]

  • 2. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway.
    Hirano Y, Murata S, Tanaka K, Shimizu M, Sato R.
    J Biol Chem; 2003 May 09; 278(19):16809-19. PubMed ID: 12615929
    [Abstract] [Full Text] [Related]

  • 3. Characterization of two Chinese hamster ovary cell lines expressing the COOH-terminal domains of sterol regulatory element-binding protein (SREBP)-1.
    Kawabe Y, Imanaka T, Kodama T, Takano T, Sato R.
    Cell Struct Funct; 1998 Aug 09; 23(4):187-92. PubMed ID: 9855111
    [Abstract] [Full Text] [Related]

  • 4. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis.
    Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL.
    EMBO J; 1996 Mar 01; 15(5):1012-20. PubMed ID: 8605870
    [Abstract] [Full Text] [Related]

  • 5. Purification of an interleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains.
    Wang X, Pai JT, Wiedenfeld EA, Medina JC, Slaughter CA, Goldstein JL, Brown MS.
    J Biol Chem; 1995 Jul 28; 270(30):18044-50. PubMed ID: 7629113
    [Abstract] [Full Text] [Related]

  • 6. Sterol regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene through a direct interaction between sterol regulatory element binding protein and the trimeric CCAAT-binding factor/nuclear factor Y.
    Dooley KA, Millinder S, Osborne TF.
    J Biol Chem; 1998 Jan 16; 273(3):1349-56. PubMed ID: 9430668
    [Abstract] [Full Text] [Related]

  • 7. The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter.
    Moon YA, Lee JJ, Park SW, Ahn YH, Kim KS.
    J Biol Chem; 2000 Sep 29; 275(39):30280-6. PubMed ID: 10801800
    [Abstract] [Full Text] [Related]

  • 8. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver.
    Sheng Z, Otani H, Brown MS, Goldstein JL.
    Proc Natl Acad Sci U S A; 1995 Feb 14; 92(4):935-8. PubMed ID: 7862668
    [Abstract] [Full Text] [Related]

  • 9. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver.
    Shimomura I, Bashmakov Y, Shimano H, Horton JD, Goldstein JL, Brown MS.
    Proc Natl Acad Sci U S A; 1997 Nov 11; 94(23):12354-9. PubMed ID: 9356453
    [Abstract] [Full Text] [Related]

  • 10. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane.
    Hua X, Sakai J, Brown MS, Goldstein JL.
    J Biol Chem; 1996 Apr 26; 271(17):10379-84. PubMed ID: 8626610
    [Abstract] [Full Text] [Related]

  • 11. Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins.
    Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, Shimano H, Maeda M.
    J Biol Chem; 2000 Apr 28; 275(17):12497-502. PubMed ID: 10777536
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway.
    Heemers H, Maes B, Foufelle F, Heyns W, Verhoeven G, Swinnen JV.
    Mol Endocrinol; 2001 Oct 28; 15(10):1817-28. PubMed ID: 11579213
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Isoxanthohumol stimulates ubiquitin-proteasome-dependent degradation of precursor forms of sterol regulatory element-binding proteins.
    Inoue J, Miyata S, Shimizu M, Sato R.
    Biosci Biotechnol Biochem; 2018 Sep 28; 82(9):1591-1598. PubMed ID: 29804513
    [Abstract] [Full Text] [Related]

  • 16. Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1.
    Tabor DE, Kim JB, Spiegelman BM, Edwards PA.
    J Biol Chem; 1998 Aug 21; 273(34):22052-8. PubMed ID: 9705348
    [Abstract] [Full Text] [Related]

  • 17. Translocation-arrested apolipoprotein B evades proteasome degradation via a sterol-sensitive block in ubiquitin conjugation.
    Du EZ, Fleming JF, Wang SL, Spitsen GM, Davis RA.
    J Biol Chem; 1999 Jan 15; 274(3):1856-62. PubMed ID: 9880570
    [Abstract] [Full Text] [Related]

  • 18. Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor.
    Kuhn DJ, Burns AC, Kazi A, Dou QP.
    Biochim Biophys Acta; 2004 Jun 01; 1682(1-3):1-10. PubMed ID: 15158750
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress.
    Soccio RE, Adams RM, Maxwell KN, Breslow JL.
    J Biol Chem; 2005 May 13; 280(19):19410-8. PubMed ID: 15760897
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.