These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 11500308

  • 1. Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model.
    Bertoldo A, Peltoniemi P, Oikonen V, Knuuti J, Nuutila P, Cobelli C.
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E524-36. PubMed ID: 11500308
    [Abstract] [Full Text] [Related]

  • 2. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans.
    Peltoniemi P, Lönnroth P, Laine H, Oikonen V, Tolvanen T, Grönroos T, Strindberg L, Knuuti J, Nuutila P.
    Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1122-30. PubMed ID: 11052968
    [Abstract] [Full Text] [Related]

  • 3. Weight loss-induced plasticity of glucose transport and phosphorylation in the insulin resistance of obesity and type 2 diabetes.
    Williams KV, Bertoldo A, Kinahan P, Cobelli C, Kelley DE.
    Diabetes; 2003 Jul; 52(7):1619-26. PubMed ID: 12829624
    [Abstract] [Full Text] [Related]

  • 4. Quantification of glucose transport and phosphorylation in human skeletal muscle using FDG PET.
    Reinhardt M, Beu M, Vosberg H, Herzog H, Hübinger A, Reinauer H, Müller-Gärtner HW.
    J Nucl Med; 1999 Jun; 40(6):977-85. PubMed ID: 10452314
    [Abstract] [Full Text] [Related]

  • 5. Glucose transport and phosphorylation in skeletal muscle in obesity: insight from a muscle-specific positron emission tomography model.
    Williams KV, Bertoldo A, Mattioni B, Price JC, Cobelli C, Kelley DE.
    J Clin Endocrinol Metab; 2003 Mar; 88(3):1271-9. PubMed ID: 12629118
    [Abstract] [Full Text] [Related]

  • 6. Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-D-glucose.
    Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE.
    J Clin Endocrinol Metab; 2005 Mar; 90(3):1752-9. PubMed ID: 15613423
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle.
    Bertoldo A, Pencek RR, Azuma K, Price JC, Kelley C, Cobelli C, Kelley DE.
    Diabetes; 2006 Nov; 55(11):3028-37. PubMed ID: 17065339
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT.
    Cochran BJ, Ryder WJ, Parmar A, Klaeser K, Reilhac A, Angelis GI, Meikle SR, Barter PJ, Rye KA.
    J Vis Exp; 2017 May 02; (123):. PubMed ID: 28518081
    [Abstract] [Full Text] [Related]

  • 11. Dexamethasone-induced insulin resistance: kinetic modeling using novel PET radiopharmaceutical 6-deoxy-6-[(18)F]fluoro-D-glucose.
    Su KH, Chandramouli V, Ismail-Beigi F, Muzic RF.
    Mol Imaging Biol; 2014 Oct 02; 16(5):710-20. PubMed ID: 24819311
    [Abstract] [Full Text] [Related]

  • 12. Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET.
    Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R.
    J Nucl Med; 2003 Oct 02; 44(10):1592-8. PubMed ID: 14530472
    [Abstract] [Full Text] [Related]

  • 13. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.
    Trägårdh M, Møller N, Sørensen M.
    J Nucl Med; 2015 Sep 02; 56(9):1366-71. PubMed ID: 26159590
    [Abstract] [Full Text] [Related]

  • 14. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis.
    Virtanen KA, Peltoniemi P, Marjamäki P, Asola M, Strindberg L, Parkkola R, Huupponen R, Knuuti J, Lönnroth P, Nuutila P.
    Diabetologia; 2001 Dec 02; 44(12):2171-9. PubMed ID: 11793018
    [Abstract] [Full Text] [Related]

  • 15. Use of positron emission tomography for the assessment of skeletal muscle glucose metabolism.
    Selberg O, Müller MJ, van den Hoff J, Burchert W.
    Nutrition; 2002 Apr 02; 18(4):323-8. PubMed ID: 11934545
    [Abstract] [Full Text] [Related]

  • 16. A new Michaelis-Menten-based kinetic model for transport and phosphorylation of glucose and its analogs in skeletal muscle.
    Huang HM, Ismail-Beigi F, Muzic RF.
    Med Phys; 2011 Aug 02; 38(8):4587-99. PubMed ID: 21928632
    [Abstract] [Full Text] [Related]

  • 17. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary ¹⁸F-FDG Kinetics, Vascular Transit Times, and Perfusion.
    Wellman TJ, Winkler T, Vidal Melo MF.
    Ann Biomed Eng; 2015 Nov 02; 43(11):2722-34. PubMed ID: 25940652
    [Abstract] [Full Text] [Related]

  • 18. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia.
    Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, Mies G.
    J Nucl Med; 2011 Aug 02; 52(8):1252-60. PubMed ID: 21764786
    [Abstract] [Full Text] [Related]

  • 19. Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies.
    Torizuka T, Zasadny KR, Recker B, Wahl RL.
    Radiology; 1998 Jun 02; 207(3):767-74. PubMed ID: 9609902
    [Abstract] [Full Text] [Related]

  • 20. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging.
    Goodpaster BH, Bertoldo A, Ng JM, Azuma K, Pencek RR, Kelley C, Price JC, Cobelli C, Kelley DE.
    Diabetes; 2014 Mar 02; 63(3):1058-68. PubMed ID: 24222345
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.