These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. Plant Mol Biol; 2004 Jan; 54(1):11-22. PubMed ID: 15159631 [Abstract] [Full Text] [Related]
3. Characterization of the altered anthranilate synthase in 5-methyltryptophan-resistant rice mutants. Kim DS, Lee IS, Jang CS, Kang SY, Seo YW. Plant Cell Rep; 2005 Aug; 24(6):357-65. PubMed ID: 15776237 [Abstract] [Full Text] [Related]
4. Characterization of tryptophan-overproducing potato transgenic for a mutant rice anthranilate synthase alpha-subunit gene (OASA1D). Matsuda F, Yamada T, Miyazawa H, Miyagawa H, Wakasa K. Planta; 2005 Oct; 222(3):535-45. PubMed ID: 15912354 [Abstract] [Full Text] [Related]
5. Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice. Dubouzet JG, Matsuda F, Ishihara A, Miyagawa H, Wakasa K. Plant Biotechnol J; 2013 Dec; 11(9):1103-11. PubMed ID: 23980801 [Abstract] [Full Text] [Related]
6. Application of gene targeting to designed mutation breeding of high-tryptophan rice. Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S. Plant Physiol; 2011 Jul; 156(3):1269-77. PubMed ID: 21543727 [Abstract] [Full Text] [Related]
9. Targeting a nuclear anthranilate synthase alpha-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Zhang XH, Brotherton JE, Widholm JM, Portis AR. Plant Physiol; 2001 Sep; 127(1):131-41. PubMed ID: 11553741 [Abstract] [Full Text] [Related]
10. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H. J Exp Bot; 2006 Sep; 57(12):3069-78. PubMed ID: 16908506 [Abstract] [Full Text] [Related]
11. Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway. Kanno T, Komatsu A, Kasai K, Dubouzet JG, Sakurai M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. Plant Physiol; 2005 Aug; 138(4):2260-8. PubMed ID: 16040654 [Abstract] [Full Text] [Related]
13. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K. Plant J; 2008 May; 54(3):481-95. PubMed ID: 18266919 [Abstract] [Full Text] [Related]
14. Tryptophan and indole analog mediated plastid transformation. Barone P, Zhang XH, Widholm JM. Methods Mol Biol; 2014 May; 1132():187-203. PubMed ID: 24599854 [Abstract] [Full Text] [Related]
18. Feedback-insensitive anthranilate synthase gene as a novel selectable marker for soybean transformation. Chen SY. Sheng Wu Gong Cheng Xue Bao; 2004 Sep; 20(5):646-51. PubMed ID: 15973983 [Abstract] [Full Text] [Related]
19. Manipulation of amino acid composition in soybean seeds by the combination of deregulated tryptophan biosynthesis and storage protein deficiency. Kita Y, Nakamoto Y, Takahashi M, Kitamura K, Wakasa K, Ishimoto M. Plant Cell Rep; 2010 Jan; 29(1):87-95. PubMed ID: 19943163 [Abstract] [Full Text] [Related]
20. Use of 4-methylindole or 7-methyl-DL-tryptophan in a transformant selection system based on the feedback-insensitive anthranilate synthase alpha-subunit of tobacco (ASA2). Barone P, Widholm JM. Plant Cell Rep; 2008 Mar; 27(3):509-17. PubMed ID: 18060408 [Abstract] [Full Text] [Related] Page: [Next] [New Search]