These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of intercellular junctions in the passage of horseradish peroxidase across aortic endothelium. Huang AL, Jan KM, Chien S. Lab Invest; 1992 Aug; 67(2):201-9. PubMed ID: 1501446 [Abstract] [Full Text] [Related]
3. Transport pathways for macromolecules in the aortic endothelium. II. The distribution analysis of plasmalemmal vesicles reconstructed by serial sections. Ogawa K, Taniguchi K. Anat Rec; 1993 Nov; 237(3):358-64. PubMed ID: 8291689 [Abstract] [Full Text] [Related]
4. Ultrastructural studies on macromolecular permeability in relation to endothelial cell turnover. Chen YL, Jan KM, Lin HS, Chien S. Atherosclerosis; 1995 Nov; 118(1):89-104. PubMed ID: 8579635 [Abstract] [Full Text] [Related]
5. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Lossinsky AS, Shivers RR. Histol Histopathol; 2004 Apr; 19(2):535-64. PubMed ID: 15024715 [Abstract] [Full Text] [Related]
6. Macromolecular transport across arterial and venous endothelium in rats. Studies with Evans blue-albumin and horseradish peroxidase. Chuang PT, Cheng HJ, Lin SJ, Jan KM, Lee MM, Chien S. Arteriosclerosis; 1990 Apr; 10(2):188-97. PubMed ID: 2180395 [Abstract] [Full Text] [Related]
7. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. Schnitzer JE, Oh P, Pinney E, Allard J. J Cell Biol; 1994 Dec; 127(5):1217-32. PubMed ID: 7525606 [Abstract] [Full Text] [Related]
8. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. J Leukoc Biol; 1996 Jan; 59(1):100-15. PubMed ID: 8558058 [Abstract] [Full Text] [Related]
9. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP. J Biol Chem; 2001 Dec 28; 276(52):48619-22. PubMed ID: 11689550 [Abstract] [Full Text] [Related]
10. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Simionescu M, Gafencu A, Antohe F. Microsc Res Tech; 2002 Jun 01; 57(5):269-88. PubMed ID: 12112439 [Abstract] [Full Text] [Related]
11. Transport pathways for macromolecules in the aortic endothelium: I. Transendothelial channels revealed by three-dimensional reconstruction using serial sections. Ogawa K, Watabe T, Taniguchi K. Anat Rec; 1993 Aug 01; 236(4):653-63. PubMed ID: 7691037 [Abstract] [Full Text] [Related]
12. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Minshall RD, Tiruppathi C, Vogel SM, Malik AB. Histochem Cell Biol; 2002 Feb 01; 117(2):105-12. PubMed ID: 11935286 [Abstract] [Full Text] [Related]
13. Role of caveolin-1 in the regulation of pulmonary endothelial permeability. Sun Y, Minshall RD, Hu G. Methods Mol Biol; 2011 Feb 01; 763():303-17. PubMed ID: 21874461 [Abstract] [Full Text] [Related]
15. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Schnitzer JE, Allard J, Oh P. Am J Physiol; 1995 Jan 01; 268(1 Pt 2):H48-55. PubMed ID: 7840297 [Abstract] [Full Text] [Related]
16. Distribution of charged sites on lymphatic endothelium. Jones WR, O'Morchoe CC, Jarosz HM, O'Morchoe PJ. Lymphology; 1986 Mar 01; 19(1):5-14. PubMed ID: 2425196 [Abstract] [Full Text] [Related]
17. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L. Endothelium; 2008 Mar 01; 15(5-6):254-64. PubMed ID: 19065317 [Abstract] [Full Text] [Related]
18. Disruption of endothelial caveolae is associated with impairment of both NO- as well as EDHF in acetylcholine-induced relaxation depending on their relative contribution in different vascular beds. Xu Y, Henning RH, van der Want JJ, van Buiten A, van Gilst WH, Buikema H. Life Sci; 2007 Apr 10; 80(18):1678-85. PubMed ID: 17335855 [Abstract] [Full Text] [Related]
19. Relation between lipopolysaccharide-induced endothelial cell injury and entry of macromolecules into the rat aorta in vivo. Penn MS, Chisolm GM. Circ Res; 1991 May 10; 68(5):1259-69. PubMed ID: 2018990 [Abstract] [Full Text] [Related]
20. Caveolae require intact VAMP for targeted transport in vascular endothelium. McIntosh DP, Schnitzer JE. Am J Physiol; 1999 Dec 10; 277(6):H2222-32. PubMed ID: 10600840 [Abstract] [Full Text] [Related] Page: [Next] [New Search]