These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 1150626

  • 21. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB, Wubbolts MG, Witholt B.
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [Abstract] [Full Text] [Related]

  • 22. [Oxidation of n-alkanes by Pseudomonas aeruginosa strain carrying the plasmid pBS251].
    Andreeva AL, Il'chenko AP, Boronin AM.
    Mikrobiologiia; 1985 Dec; 54(6):944-7. PubMed ID: 3937960
    [Abstract] [Full Text] [Related]

  • 23. A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.
    Panasia G, Drees SL, Fetzner S, Philipp B.
    Appl Environ Microbiol; 2021 Jul 27; 87(16):e0076221. PubMed ID: 34085859
    [Abstract] [Full Text] [Related]

  • 24. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.
    Chen Q, Janssen DB, Witholt B.
    J Bacteriol; 1995 Dec 27; 177(23):6894-901. PubMed ID: 7592483
    [Abstract] [Full Text] [Related]

  • 25. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ, Kemp PD.
    J Bacteriol; 1980 Apr 27; 142(1):21-6. PubMed ID: 6989805
    [Abstract] [Full Text] [Related]

  • 26. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C, Woodley JM, Baganz F.
    Enzyme Microb Technol; 2011 May 06; 48(6-7):480-6. PubMed ID: 22113020
    [Abstract] [Full Text] [Related]

  • 27. Involvement of BmoR and BmoG in n-alkane metabolism in 'Pseudomonas butanovora'.
    Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA.
    Microbiology (Reading); 2008 Jan 06; 154(Pt 1):139-147. PubMed ID: 18174133
    [Abstract] [Full Text] [Related]

  • 28. Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida.
    Shaw JP, Harayama S.
    Eur J Biochem; 1990 Aug 17; 191(3):705-14. PubMed ID: 2202600
    [Abstract] [Full Text] [Related]

  • 29. Reversal by DNA amplifications of an unusual mutation blocking alkane and alcohol utilization in Pseudomonas putida.
    McBeth DL, Shapiro JA.
    Mol Gen Genet; 1984 Aug 17; 197(3):384-91. PubMed ID: 6597334
    [Abstract] [Full Text] [Related]

  • 30. [Primary oxidation mechanisms in degradation of aliphatic hydrocarbons by bacterial enzyme systems (author's transl)].
    Hammer KD, Liemann F.
    Zentralbl Bakteriol Orig B; 1976 Jul 17; 162(1-2):169-79. PubMed ID: 998045
    [Abstract] [Full Text] [Related]

  • 31. Characterization of the OCT plasmid encoding alkane oxidation and mercury resistance in Pseudomonas putida.
    Harder PA, Kunz DA.
    J Bacteriol; 1986 Feb 17; 165(2):650-3. PubMed ID: 3003035
    [Abstract] [Full Text] [Related]

  • 32. Product repression of alkane monooxygenase expression in Pseudomonas butanovora.
    Doughty DM, Sayavedra-Soto LA, Arp DJ, Bottomley PJ.
    J Bacteriol; 2006 Apr 17; 188(7):2586-92. PubMed ID: 16547046
    [Abstract] [Full Text] [Related]

  • 33. The isolation and characterization of alkane-oxidizing organisms and the effect of growth substrate on isocitric lyase.
    Trust TJ, Millis NF.
    J Gen Microbiol; 1970 May 17; 61(2):245-54. PubMed ID: 5476894
    [No Abstract] [Full Text] [Related]

  • 34. Alkane oxidation in Candida tropicalis.
    Gallo M, Bertrand JC, Roche B, Azoulay E.
    Biochim Biophys Acta; 1973 Mar 08; 296(3):624-38. PubMed ID: 4143948
    [No Abstract] [Full Text] [Related]

  • 35. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.
    Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R.
    J Biol Chem; 2014 Nov 28; 289(48):33275-86. PubMed ID: 25315778
    [Abstract] [Full Text] [Related]

  • 36. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.
    Witholt B, de Smet MJ, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G.
    Trends Biotechnol; 1990 Feb 28; 8(2):46-52. PubMed ID: 1366497
    [Abstract] [Full Text] [Related]

  • 37. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD, Sokatch JR.
    J Bacteriol; 1972 Jun 28; 110(3):1073-81. PubMed ID: 5030618
    [Abstract] [Full Text] [Related]

  • 38. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications.
    Shaw JP, Schwager F, Harayama S.
    Biochem J; 1992 May 01; 283 ( Pt 3)(Pt 3):789-94. PubMed ID: 1590768
    [Abstract] [Full Text] [Related]

  • 39. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions.
    Chalmers RM, Keen JN, Fewson CA.
    Biochem J; 1991 Jan 01; 273(Pt 1)(Pt 1):99-107. PubMed ID: 1989592
    [Abstract] [Full Text] [Related]

  • 40. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans.
    van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B.
    Mol Microbiol; 1992 Nov 01; 6(21):3121-36. PubMed ID: 1453953
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.