These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
663 related items for PubMed ID: 11509362
1. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Samsonov AV, Mihalyov I, Cohen FS. Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362 [Abstract] [Full Text] [Related]
2. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM, Tamm LK. Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [Abstract] [Full Text] [Related]
3. Lipid rafts reconstituted in model membranes. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302 [Abstract] [Full Text] [Related]
4. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Bakht O, Pathak P, London E. Biophys J; 2007 Dec 15; 93(12):4307-18. PubMed ID: 17766350 [Abstract] [Full Text] [Related]
5. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE, Smith DA, Hooper NM. Mol Membr Biol; 2007 Dec 15; 24(3):233-42. PubMed ID: 17520480 [Abstract] [Full Text] [Related]
6. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A, Draus J, Subczynski WK. Cell Mol Biol Lett; 2003 Dec 15; 8(1):147-59. PubMed ID: 12655369 [Abstract] [Full Text] [Related]
7. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M. Biochim Biophys Acta; 2013 Sep 15; 1828(9):2099-110. PubMed ID: 23702462 [Abstract] [Full Text] [Related]
8. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Pokorny A, Almeida PF. Biochemistry; 2005 Jul 12; 44(27):9538-44. PubMed ID: 15996108 [Abstract] [Full Text] [Related]
9. Visualizing detergent resistant domains in model membranes with atomic force microscopy. Rinia HA, Snel MM, van der Eerden JP, de Kruijff B. FEBS Lett; 2001 Jul 13; 501(1):92-6. PubMed ID: 11457463 [Abstract] [Full Text] [Related]
10. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Quinn PJ. Langmuir; 2013 Jul 30; 29(30):9447-56. PubMed ID: 23863113 [Abstract] [Full Text] [Related]
11. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Massey JB, Pownall HJ. Biochemistry; 2005 Aug 02; 44(30):10423-33. PubMed ID: 16042420 [Abstract] [Full Text] [Related]
12. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Biophys J; 2018 Oct 16; 115(8):1530-1540. PubMed ID: 30274830 [Abstract] [Full Text] [Related]
13. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Staneva G, Seigneuret M, Conjeaud H, Puff N, Angelova MI. Langmuir; 2011 Dec 20; 27(24):15074-82. PubMed ID: 22026409 [Abstract] [Full Text] [Related]
14. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Ayuyan AG, Cohen FS. Biophys J; 2006 Sep 15; 91(6):2172-83. PubMed ID: 16815906 [Abstract] [Full Text] [Related]
15. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Geisse NA, Cover TL, Henderson RM, Edwardson JM. Biochem J; 2004 Aug 01; 381(Pt 3):911-7. PubMed ID: 15128269 [Abstract] [Full Text] [Related]
16. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Biochim Biophys Acta Biomembr; 2018 Oct 01; 1860(10):1985-1993. PubMed ID: 29730243 [Abstract] [Full Text] [Related]
17. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Kahya N. Chem Phys Lipids; 2006 Jun 01; 141(1-2):158-68. PubMed ID: 16696961 [Abstract] [Full Text] [Related]
18. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Kiessling V, Crane JM, Tamm LK. Biophys J; 2006 Nov 01; 91(9):3313-26. PubMed ID: 16905614 [Abstract] [Full Text] [Related]
19. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. McIntosh TJ, Vidal A, Simon SA. Biophys J; 2003 Sep 01; 85(3):1656-66. PubMed ID: 12944280 [Abstract] [Full Text] [Related]