These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 11514620
1. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS. Mol Biol Cell; 2001 Aug; 12(8):2341-51. PubMed ID: 11514620 [Abstract] [Full Text] [Related]
2. rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. Deretic D, Huber LA, Ransom N, Mancini M, Simons K, Papermaster DS. J Cell Sci; 1995 Jan; 108 ( Pt 1)():215-24. PubMed ID: 7738098 [Abstract] [Full Text] [Related]
3. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. Moritz OL, Tam BM, Papermaster DS, Nakayama T. J Biol Chem; 2001 Jul 27; 276(30):28242-51. PubMed ID: 11350960 [Abstract] [Full Text] [Related]
4. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration. Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B. Invest Ophthalmol Vis Sci; 2003 Aug 27; 44(8):3614-21. PubMed ID: 12882815 [Abstract] [Full Text] [Related]
8. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors. Perkins BD, Kainz PM, O'Malley DM, Dowling JE. Vis Neurosci; 2002 Mar 18; 19(4):257R-264R. PubMed ID: 12511087 [Abstract] [Full Text] [Related]
9. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors. Ojeda Naharros I, Gesemann M, Mateos JM, Barmettler G, Forbes A, Ziegler U, Neuhauss SCF, Bachmann-Gagescu R. PLoS Genet; 2017 Dec 18; 13(12):e1007150. PubMed ID: 29281629 [Abstract] [Full Text] [Related]
11. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. Deretic D, Traverso V, Parkins N, Jackson F, Rodriguez de Turco EB, Ransom N. Mol Biol Cell; 2004 Jan 18; 15(1):359-70. PubMed ID: 13679519 [Abstract] [Full Text] [Related]
12. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. Tam BM, Moritz OL, Hurd LB, Papermaster DS. J Cell Biol; 2000 Dec 25; 151(7):1369-80. PubMed ID: 11134067 [Abstract] [Full Text] [Related]
14. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R, Oglesby E, Marsh-Armstrong N. Exp Eye Res; 2008 Apr 25; 86(4):612-21. PubMed ID: 18291367 [Abstract] [Full Text] [Related]
18. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Deretic D. Electrophoresis; 1997 Dec 25; 18(14):2537-41. PubMed ID: 9527482 [Abstract] [Full Text] [Related]
19. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa. Bogéa TH, Wen RH, Moritz OL. Invest Ophthalmol Vis Sci; 2015 Dec 25; 56(13):7947-55. PubMed ID: 26720441 [Abstract] [Full Text] [Related]
20. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. Tam BM, Moritz OL. J Neurosci; 2009 Dec 02; 29(48):15145-54. PubMed ID: 19955366 [Abstract] [Full Text] [Related] Page: [Next] [New Search]