These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 11518575
21. Dissolution rate of griseofulvin in bile salt solutions. de Smidt JH, Offringa JC, Crommelin DJ. J Pharm Sci; 1991 Apr; 80(4):399-401. PubMed ID: 1865343 [Abstract] [Full Text] [Related]
22. Micelle-vesicle transition in phospholipid-bile salt mixtures. A study by precision scanning calorimetry. Spink CH, Lieto V, Mereand E, Pruden C. Biochemistry; 1991 May 21; 30(20):5104-12. PubMed ID: 2036377 [Abstract] [Full Text] [Related]
23. Coexistence of simple and mixed bile salt-lecithin micelles: an NMR self-diffusion study. Schurtenberger P, Lindman B. Biochemistry; 1985 Dec 03; 24(25):7161-5. PubMed ID: 4084572 [Abstract] [Full Text] [Related]
24. Kinetic analysis of phospholipid exchange between phosphatidylcholine/taurocholate mixed micelles: effect of the acyl chain moiety of the micellar phosphatidylcholine. Fullington DA, Nichols JW. Biochemistry; 1993 Nov 30; 32(47):12678-84. PubMed ID: 8251487 [Abstract] [Full Text] [Related]
25. Diffusion in bile and its implications on detergency. Sehlin RC, Cussler EL, Evans DF. Biochim Biophys Acta; 1975 Jun 23; 388(3):385-96. PubMed ID: 1137718 [Abstract] [Full Text] [Related]
26. The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile. Duane WC. Biochim Biophys Acta; 1975 Aug 25; 398(2):275-86. PubMed ID: 1182138 [Abstract] [Full Text] [Related]
27. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability. Guo Q, Cai J, Li P, Xu D, Ni X, Wen H, Liu D, Lin S, Hu H. Drug Des Devel Ther; 2016 Aug 25; 10():3789-3798. PubMed ID: 27895469 [Abstract] [Full Text] [Related]
28. Influence of La3+ ions on the egg-yolk phosphatidylcholine and sodium taurocholate self-assemblies in aqueous suspension. Chen H, Guo Z, Yu F, Qi J, Zhang L, Zhou Y, Yang Z, Xu Y, Wu J, Xu G. J Colloid Interface Sci; 2008 Dec 01; 328(1):158-65. PubMed ID: 18835486 [Abstract] [Full Text] [Related]
29. Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. Enright EF, Joyce SA, Gahan CGM, Taylor LS. Eur J Pharm Biopharm; 2020 Aug 01; 153():68-83. PubMed ID: 32473291 [Abstract] [Full Text] [Related]
30. Effect on the partition equilibrium of various drugs by the formation of mixed bile salt/phosphatidylcholine/fatty acid micelles. A characterization by micellar affinity capillary electrophoresis. Part IV. Schawrz MA, Raith K, Dongowski G, Neubert RH. J Chromatogr A; 1998 Jun 05; 809(1-2):219-29. PubMed ID: 9677716 [Abstract] [Full Text] [Related]
31. Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. Homan R, Hamelehle KL. J Lipid Res; 1998 Jun 05; 39(6):1197-209. PubMed ID: 9643351 [Abstract] [Full Text] [Related]
32. Incorporation of cholesterol in sphingomyelin- phosphatidylcholine vesicles has profound effects on detergent-induced phase transitions. Moschetta A, Frederik PM, Portincasa P, vanBerge-Henegouwen GP, van Erpecum KJ. J Lipid Res; 2002 Jul 05; 43(7):1046-53. PubMed ID: 12091488 [Abstract] [Full Text] [Related]
33. Rapid (1 hour) high performance gel filtration chromatography resolves coexisting simple micelles, mixed micelles, and vesicles in bile. Cohen DE, Carey MC. J Lipid Res; 1990 Nov 05; 31(11):2103-12. PubMed ID: 2086707 [Abstract] [Full Text] [Related]
34. Resistant Maltodextrin Decreases Micellar Solubility of Lipids and Diffusion of Bile Salt Micelles and Suppresses Incorporation of Micellar Fatty Acids into Caco-2 Cells. Ikeda I, Tamakuni K, Sakuma T, Ozawa R, Inoue N, Kishimoto Y. J Nutr Sci Vitaminol (Tokyo); 2016 Nov 05; 62(5):335-340. PubMed ID: 27928121 [Abstract] [Full Text] [Related]
35. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Cohen DE, Thurston GM, Chamberlin RA, Benedek GB, Carey MC. Biochemistry; 1998 Oct 20; 37(42):14798-814. PubMed ID: 9778354 [Abstract] [Full Text] [Related]
36. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility. Enright EF, Joyce SA, Gahan CG, Griffin BT. Mol Pharm; 2017 Apr 03; 14(4):1251-1263. PubMed ID: 28186768 [Abstract] [Full Text] [Related]
37. The novel formulation design of self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion III: the permeation mechanism of a poorly water soluble drug entrapped O/W microemulsion in rat isolated intestinal membrane by the Ussing chamber method. Araya H, Tomita M, Hayashi M. Drug Metab Pharmacokinet; 2006 Feb 03; 21(1):45-53. PubMed ID: 16547393 [Abstract] [Full Text] [Related]
38. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field-Flow Fractionation/Multiangle Laser Light Scattering. Elvang PA, Hinna AH, Brouwers J, Hens B, Augustijns P, Brandl M. J Pharm Sci; 2016 Sep 03; 105(9):2832-2839. PubMed ID: 27103012 [Abstract] [Full Text] [Related]
39. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. Moschetta A, vanBerge-Henegouwen GP, Portincasa P, Renooij WL, Groen AK, van Erpecum KJ. J Hepatol; 2001 Apr 03; 34(4):492-9. PubMed ID: 11394647 [Abstract] [Full Text] [Related]
40. Characterization of phospholipid transfer between mixed phospholipid-bile salt micelles. Fullington DA, Shoemaker DG, Nichols JW. Biochemistry; 1990 Jan 30; 29(4):879-86. PubMed ID: 2340281 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]