These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 11523781

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Substrate specificities of the ntg1 and ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical.
    Sentürker S, Auffret van der Kemp P, You HJ, Doetsch PW, Dizdaroglu M, Boiteux S.
    Nucleic Acids Res; 1998 Dec 01; 26(23):5270-6. PubMed ID: 9826748
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae.
    Hanna M, Chow BL, Morey NJ, Jinks-Robertson S, Doetsch PW, Xiao W.
    DNA Repair (Amst); 2004 Jan 05; 3(1):51-9. PubMed ID: 14697759
    [Abstract] [Full Text] [Related]

  • 8. Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p. Identification of a Mlh1p binding motif.
    Gellon L, Werner M, Boiteux S.
    J Biol Chem; 2002 Aug 16; 277(33):29963-72. PubMed ID: 12042306
    [Abstract] [Full Text] [Related]

  • 9. Ntg1 and Ntg2 proteins as 5-formyluracil-DNA glycosylases/AP lyases in Saccharomyces cerevisiae.
    Zhang QM, Hashiguchi K, Kino K, Sugiyama H, Yonei S.
    Int J Radiat Biol; 2003 May 16; 79(5):341-9. PubMed ID: 12943242
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD, Neishabury M, Jones DH, Reed SH, Boiteux S, Waters R.
    Yeast; 1999 Feb 16; 15(3):205-18. PubMed ID: 10077187
    [Abstract] [Full Text] [Related]

  • 17. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.
    Phadnis N, Mehta R, Meednu N, Sia EA.
    DNA Repair (Amst); 2006 Jul 13; 5(7):829-39. PubMed ID: 16730479
    [Abstract] [Full Text] [Related]

  • 18. Identification of SUMO modification sites in the base excision repair protein, Ntg1.
    Swartzlander DB, McPherson AJ, Powers HR, Limpose KL, Kuiper EG, Degtyareva NP, Corbett AH, Doetsch PW.
    DNA Repair (Amst); 2016 Dec 13; 48():51-62. PubMed ID: 27839712
    [Abstract] [Full Text] [Related]

  • 19. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae.
    Boiteux S, Guillet M.
    DNA Repair (Amst); 2004 Jan 05; 3(1):1-12. PubMed ID: 14697754
    [Abstract] [Full Text] [Related]

  • 20. Yeast base excision repair: interconnections and networks.
    Doetsch PW, Morey NJ, Swanson RL, Jinks-Robertson S.
    Prog Nucleic Acid Res Mol Biol; 2001 Jan 05; 68():29-39. PubMed ID: 11554305
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.