These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 11524041
1. Importance of glycolytically derived ATP for Na+ loading via Na+/H+ exchange during metabolic inhibition in guinea pig ventricular myocytes. Satoh H, Sugiyama S, Nomura N, Terada H, Hayashi H. Clin Sci (Lond); 2001 Sep; 101(3):243-51. PubMed ID: 11524041 [Abstract] [Full Text] [Related]
2. Blocking Na(+)-H+ exchange by cariporide reduces Na(+)-overload in ischemia and is cardioprotective. Hartmann M, Decking UK. J Mol Cell Cardiol; 1999 Nov; 31(11):1985-95. PubMed ID: 10591025 [Abstract] [Full Text] [Related]
3. The importance of glycolytically-derived ATP for the Na+/H+ exchange activity in guinea pig ventricular myocytes. Sugiyama S, Satoh H, Nomura N, Terada H, Watanabe H, Hayashi H. Mol Cell Biochem; 2001 Jan; 217(1-2):153-61. PubMed ID: 11269660 [Abstract] [Full Text] [Related]
4. NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes. van Borren MM, Baartscheer A, Wilders R, Ravesloot JH. J Mol Cell Cardiol; 2004 Aug; 37(2):567-77. PubMed ID: 15276026 [Abstract] [Full Text] [Related]
5. Contribution of protons to post-ischemic Na(+) and Ca(2+) overload and left ventricular mechanical dysfunction. Clanachan AS. J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S141-S148. PubMed ID: 16686669 [Abstract] [Full Text] [Related]
7. The role of Na+/H+ exchange and the Na+/K+ pump in the regulation of [Na+]i during metabolic inhibition in guinea pig myocytes. Katoh H, Satoh H, Nakamura T, Terada H, Hayashi H. Biochem Biophys Res Commun; 1994 Aug 30; 203(1):93-8. PubMed ID: 8074732 [Abstract] [Full Text] [Related]
8. Protective effect of HOE642, a selective blocker of Na+-H+ exchange, against the development of rigor contracture in rat ventricular myocytes. Ruiz-Meana M, Garcia-Dorado D, Juliá M, Inserte J, Siegmund B, Ladilov Y, Piper M, Tritto FP, González MA, Soler-Soler J. Exp Physiol; 2000 Jan 30; 85(1):17-25. PubMed ID: 10662888 [Abstract] [Full Text] [Related]
9. Induction of expression of the sodium-hydrogen exchanger in rat myocardium. Dyck JR, Maddaford TG, Pierce GN, Fliegel L. Cardiovasc Res; 1995 Feb 30; 29(2):203-8. PubMed ID: 7736496 [Abstract] [Full Text] [Related]
10. Modulation of sodium-hydrogen exchange activity in cardiac myocytes during acidosis and realkalinisation: effects on calcium, pHi, and cell shortening. Ward CA, Moffat MP. Cardiovasc Res; 1995 Feb 30; 29(2):247-53. PubMed ID: 7736502 [Abstract] [Full Text] [Related]
11. Differences in the effects of Na+-H+ exchange inhibitors on cardiac function and apoptosis in guinea-pig ischemia-reperfused hearts. Hotta Y, Nishimaki H, Takeo T, Itoh G, Yajima M, Otsuka-Murakami H, Ishikawa N, Kawai N, Huang L, Yamada K, Yamamoto S, Matsui K, Ohashi N. Eur J Pharmacol; 2004 Oct 25; 503(1-3):109-22. PubMed ID: 15496305 [Abstract] [Full Text] [Related]
12. Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Inserte J, Barba I, Hernando V, Abellán A, Ruiz-Meana M, Rodríguez-Sinovas A, Garcia-Dorado D. Cardiovasc Res; 2008 Mar 01; 77(4):782-90. PubMed ID: 18056767 [Abstract] [Full Text] [Related]
14. Pathogenesis and the role of Ca2+ overload during myocardial ischemia/reperfusion. Hayashi H. Nagoya J Med Sci; 2000 Nov 01; 63(3-4):91-8. PubMed ID: 11201989 [Abstract] [Full Text] [Related]
15. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. Circ Res; 2008 Oct 10; 103(8):891-9. PubMed ID: 18776042 [Abstract] [Full Text] [Related]
16. Pharmacological profile of KR-33028, a highly selective inhibitor of Na+/H+ exchanger. Jung YS, Kim MY, Kim MJ, Oh KS, Yi KY, Lee S, Yoo SE, Lee BH. Eur J Pharmacol; 2006 Mar 27; 535(1-3):220-7. PubMed ID: 16516883 [Abstract] [Full Text] [Related]
17. A single cell model of myocardial reperfusion injury: changes in intracellular Na+ and Ca2+ concentrations in guinea pig ventricular myocytes. Nakamura T, Hayashi H, Satoh H, Katoh H, Kaneko M, Terada H. Mol Cell Biochem; 1999 Apr 27; 194(1-2):147-57. PubMed ID: 10391134 [Abstract] [Full Text] [Related]
18. Role of the Na+-H+ exchanger (NHE1) in heart muscle function during transient acidosis. A study in papillary muscles from rat and guinea pig hearts. Sundset R, Bertelsen G, Ytrehus K. Can J Physiol Pharmacol; 2003 Oct 27; 81(10):937-43. PubMed ID: 14608410 [Abstract] [Full Text] [Related]
19. Intracellular acidosis decreases the outward Na(+)-Ca2+ exchange current in guinea pig ventricular myocytes. Lee EH, Park SR, Paik KS, Suh CK. Yonsei Med J; 1995 May 27; 36(2):146-52. PubMed ID: 7618362 [Abstract] [Full Text] [Related]
20. [Myocardial metabolism abnormalities during ischemia and reperfusion]. Argaud L, Ovize M. Arch Mal Coeur Vaiss; 2000 Jan 27; 93(1):87-90. PubMed ID: 11227723 [Abstract] [Full Text] [Related] Page: [Next] [New Search]