These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 11527576

  • 1. A model of oxidative phosphorylation in mammalian skeletal muscle.
    Korzeniewski B, Zoladz JA.
    Biophys Chem; 2001 Aug 30; 92(1-2):17-34. PubMed ID: 11527576
    [Abstract] [Full Text] [Related]

  • 2. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2002 Jul 01; 365(Pt 1):249-58. PubMed ID: 12132435
    [Abstract] [Full Text] [Related]

  • 3. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260
    [Abstract] [Full Text] [Related]

  • 4. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B, Zoladz JA.
    J Appl Physiol (1985); 2015 May 15; 118(10):1240-9. PubMed ID: 25767031
    [Abstract] [Full Text] [Related]

  • 5. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK.
    Mol Cell Biochem; 1998 Jul 15; 184(1-2):249-89. PubMed ID: 9746325
    [Abstract] [Full Text] [Related]

  • 6. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B.
    Biochem J; 2003 Nov 01; 375(Pt 3):799-804. PubMed ID: 12901719
    [Abstract] [Full Text] [Related]

  • 7. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF.
    Am J Physiol Endocrinol Metab; 2016 Apr 15; 310(8):E633-E642. PubMed ID: 26837809
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ, Groen AK, Van Roermund CW, Tager JM.
    Eur J Biochem; 1984 Jul 16; 142(2):417-24. PubMed ID: 6086353
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The modeling of oxidative phosphorylation in skeletal muscle.
    Korzeniewski B.
    Jpn J Physiol; 2004 Dec 16; 54(6):511-6. PubMed ID: 15760482
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.