These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 11534846

  • 1. Perceptual time-frequency subtraction algorithm for noise reduction in hearing aids.
    Li M, McAllister HG, Black ND, De Pérez TA.
    IEEE Trans Biomed Eng; 2001 Sep; 48(9):979-88. PubMed ID: 11534846
    [Abstract] [Full Text] [Related]

  • 2. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J, Hu H, Zheng C, Li G, Lutman ME, Bleeck S.
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of combined dynamic compression and single channel noise reduction for hearing aid applications.
    Kortlang S, Chen Z, Gerkmann T, Kollmeier B, Hohmann V, Ewert SD.
    Int J Audiol; 2018 Jun; 57(sup3):S43-S54. PubMed ID: 28355947
    [Abstract] [Full Text] [Related]

  • 4. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.
    Yook S, Nam KW, Kim H, Hong SH, Jang DP, Kim IY.
    Artif Organs; 2015 Apr; 39(4):361-8. PubMed ID: 25284135
    [Abstract] [Full Text] [Related]

  • 5. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T, Grimm G, Kollmeier B, Neher T.
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [Abstract] [Full Text] [Related]

  • 6. Effective compression and noise reduction configurations for hearing protectors.
    Chung K.
    J Acoust Soc Am; 2007 Feb; 121(2):1090-101. PubMed ID: 17348531
    [Abstract] [Full Text] [Related]

  • 7. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J, Hu H, Zheng C, Li G, Lutman ME, Bleeck S.
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [Abstract] [Full Text] [Related]

  • 8. Real-time multiband dynamic compression and noise reduction for binaural hearing aids.
    Kollmeier B, Peissig J, Hohmann V.
    J Rehabil Res Dev; 1993 Apr; 30(1):82-94. PubMed ID: 8263832
    [Abstract] [Full Text] [Related]

  • 9. Time-frequency masking for speech separation and its potential for hearing aid design.
    DeLiang Wang.
    Trends Amplif; 2008 Dec; 12(4):332-53. PubMed ID: 18974204
    [Abstract] [Full Text] [Related]

  • 10. Speech recognition in noise using bilateral open-fit hearing aids: the limited benefit of directional microphones and noise reduction.
    Magnusson L, Claesson A, Persson M, Tengstrand T.
    Int J Audiol; 2013 Jan; 52(1):29-36. PubMed ID: 22928919
    [Abstract] [Full Text] [Related]

  • 11. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.
    Lee JC, Nam KW, Jang DP, Kim IY.
    Artif Organs; 2015 Dec; 39(12):1061-8. PubMed ID: 25959133
    [Abstract] [Full Text] [Related]

  • 12. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N, Furst M, Muchnik C.
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [Abstract] [Full Text] [Related]

  • 13. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.
    Shao Y, Chang CH.
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):877-89. PubMed ID: 17702286
    [Abstract] [Full Text] [Related]

  • 14. [New developments in hearing aid technology].
    Kompis M.
    Ther Umsch; 2004 Jan; 61(1):35-9. PubMed ID: 14997998
    [Abstract] [Full Text] [Related]

  • 15. Effects of noise, nonlinear processing, and linear filtering on perceived speech quality.
    Arehart KH, Kates JM, Anderson MC.
    Ear Hear; 2010 Jun; 31(3):420-36. PubMed ID: 20440116
    [Abstract] [Full Text] [Related]

  • 16. Comparison of different forms of compression using wearable digital hearing aids.
    Stone MA, Moore BC, Alcántara JI, Glasberg BR.
    J Acoust Soc Am; 1999 Dec; 106(6):3603-19. PubMed ID: 10615700
    [Abstract] [Full Text] [Related]

  • 17. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N, Frölich T, Kompis M, Bögli H, Lai WK.
    J Rehabil Res Dev; 1993 Dec; 30(1):95-109. PubMed ID: 8263833
    [Abstract] [Full Text] [Related]

  • 18. Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners.
    Koning R, Bruce IC, Denys S, Wouters J.
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):687-697. PubMed ID: 29522412
    [Abstract] [Full Text] [Related]

  • 19. Assessment of hearing aid algorithms using a master hearing aid: the influence of hearing aid experience on the relationship between speech recognition and cognitive capacity.
    Rählmann S, Meis M, Schulte M, Kießling J, Walger M, Meister H.
    Int J Audiol; 2018 Jun; 57(sup3):S105-S111. PubMed ID: 28449597
    [Abstract] [Full Text] [Related]

  • 20. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.
    Chabries DM, Christiansen RW, Brey RH, Robinette MS, Harris RW.
    J Rehabil Res Dev; 1987 Jun; 24(4):65-74. PubMed ID: 3430391
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.