These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Ono Y, Mitsui H, Sato T, Minamisawa K. Mol Gen Genet; 2001 Feb; 264(6):902-12. PubMed ID: 11254138 [Abstract] [Full Text] [Related]
3. Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR. J Bacteriol; 2012 Sep; 194(18):4983-94. PubMed ID: 22773790 [Abstract] [Full Text] [Related]
4. Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. Bittner AN, Oke V. J Bacteriol; 2006 May; 188(10):3507-15. PubMed ID: 16672605 [Abstract] [Full Text] [Related]
5. Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum. Narberhaus F, Krummenacher P, Fischer HM, Hennecke H. Mol Microbiol; 1997 Apr; 24(1):93-104. PubMed ID: 9140968 [Abstract] [Full Text] [Related]
6. Expression of Two RpoH Sigma Factors in Sinorhizobium meliloti upon Heat Shock. Mitsui H, Minamisawa K. Microbes Environ; 2017 Dec 27; 32(4):394-397. PubMed ID: 29199214 [Abstract] [Full Text] [Related]
7. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K. Mol Genet Genomics; 2004 May 27; 271(4):416-25. PubMed ID: 15007732 [Abstract] [Full Text] [Related]
8. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. Sasaki S, Minamisawa K, Mitsui H. J Bacteriol; 2016 Sep 01; 198(17):2297-306. PubMed ID: 27297881 [Abstract] [Full Text] [Related]
9. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. Narberhaus F, Weiglhofer W, Fischer HM, Hennecke H. J Bacteriol; 1996 Sep 01; 178(18):5337-46. PubMed ID: 8808920 [Abstract] [Full Text] [Related]
10. OxyR-Dependent Transcription Response of Sinorhizobium meliloti to Oxidative Stress. Lehman AP, Long SR. J Bacteriol; 2018 Apr 01; 200(7):. PubMed ID: 29358497 [Abstract] [Full Text] [Related]
11. The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Martínez-Salazar JM, Sandoval-Calderón M, Guo X, Castillo-Ramírez S, Reyes A, Loza MG, Rivera J, Alvarado-Affantranger X, Sánchez F, González V, Dávila G, Ramírez-Romero MA. Microbiology (Reading); 2009 Feb 01; 155(Pt 2):386-397. PubMed ID: 19202087 [Abstract] [Full Text] [Related]
12. Promoter selectivity of the Bradyrhizobium japonicum RpoH transcription factors in vivo and in vitro. Narberhaus F, Kowarik M, Beck C, Hennecke H. J Bacteriol; 1998 May 01; 180(9):2395-401. PubMed ID: 9573191 [Abstract] [Full Text] [Related]
13. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C, Koby S, Oppenheim AB, Münchbach M, Hennecke H, Narberhaus F. Eur J Biochem; 2000 Aug 01; 267(15):4831-9. PubMed ID: 10903518 [Abstract] [Full Text] [Related]
14. Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase sigma 32 mutant. Bent AF, Signer ER. J Bacteriol; 1990 Jul 01; 172(7):3559-68. PubMed ID: 2113906 [Abstract] [Full Text] [Related]
15. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F. Microbiology (Reading); 2007 Aug 01; 153(Pt 8):2560-2571. PubMed ID: 17660420 [Abstract] [Full Text] [Related]
16. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. de Lucena DK, Pühler A, Weidner S. BMC Microbiol; 2010 Oct 18; 10():265. PubMed ID: 20955556 [Abstract] [Full Text] [Related]