These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


354 related items for PubMed ID: 11537008

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding.
    Townsend LW, Cucinotta FA, Wilson JW, Shinn JL, Badhwar G.
    Adv Space Res; 1994; 14(10):853-61. PubMed ID: 11538036
    [Abstract] [Full Text] [Related]

  • 4. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions.
    Shinn JL, Nealy JE, Townsend LW, Wilson JW, Wood JS.
    Adv Space Res; 1994; 14(10):863-71. PubMed ID: 11538037
    [Abstract] [Full Text] [Related]

  • 5. Fluence-related risk coefficients using the Harderian gland data as an example.
    Curtis SB, Townsend LW, Wilson JW, Powers-Risius P, Alpen EL, Fry RJ.
    Adv Space Res; 1992; 12(2-3):407-16. PubMed ID: 11537038
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Martian regolith as space radiation shielding.
    Simonsen LC, Nealy JE, Townsend LW, Wilson JW.
    J Spacecr Rockets; 1991; 28(1):7-8. PubMed ID: 11537624
    [Abstract] [Full Text] [Related]

  • 9. Large solar flare radiation shielding requirements for manned interplanetary missions.
    Townsend LW, Nealy JE, Wilson JW, Atwell W.
    J Spacecr Rockets; 1989; 26(2):126-8. PubMed ID: 11537157
    [Abstract] [Full Text] [Related]

  • 10. The potential impact of bystander effects on radiation risks in a Mars mission.
    Brenner DJ, Elliston CD.
    Radiat Res; 2001 Nov; 156(5 Pt 2):612-7. PubMed ID: 11604082
    [Abstract] [Full Text] [Related]

  • 11. Cosmic ray hit frequencies in critical sites in the central nervous system.
    Curtis SB, Vazquez ME, Wilson JW, Atwell W, Kim M, Capala J.
    Adv Space Res; 1998 Nov; 22(2):197-207. PubMed ID: 11541397
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Radiation environments and absorbed dose estimations on manned space missions.
    Curtis SB, Atwell W, Beever R, Hardy A.
    Adv Space Res; 1986 Nov; 6(11):269-74. PubMed ID: 11537231
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Results of time-resolved radiation exposure measurements made during U.S. Shuttle missions with a tissue equivalent proportional counter.
    Golightly MJ, Hardy AC, Hardy K.
    Adv Space Res; 1994 Oct; 14(10):923-6. PubMed ID: 11540036
    [Abstract] [Full Text] [Related]

  • 19. Tissue-specific dose equivalents of secondary mesons and leptons during galactic cosmic ray exposures for mars exploration.
    Pak S, Cucinotta FA.
    Life Sci Space Res (Amst); 2024 May; 41():29-42. PubMed ID: 38670650
    [Abstract] [Full Text] [Related]

  • 20. Risks of radiation cataracts from interplanetary space missions.
    Lett JT, Lee AC, Cox AB.
    Acta Astronaut; 1994 Nov; 32(11):739-48. PubMed ID: 11538452
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.