These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evolution of interstellar ices. Allamandola LJ, Bernstein MP, Sandford SA, Walker RL. Space Sci Rev; 1999 Mar; 90(1-2):219-32. PubMed ID: 11543288 [Abstract] [Full Text] [Related]
3. The inventory of interstellar materials available for the formation of the solar system. Sandford SA. Meteorit Planet Sci; 1996 Jul; 31(4):449-76. PubMed ID: 11541166 [Abstract] [Full Text] [Related]
4. Tracking the organic refractory component from interstellar dust to comets. Greenberg JM, Li A. Adv Space Res; 1999 Jul; 24(4):497-504. PubMed ID: 11543337 [Abstract] [Full Text] [Related]
5. Complex organics in laboratory simulations of interstellar/cometary ices. Bernstein MP, Allamandola LJ, Sandford SA. Adv Space Res; 1997 Jul; 19(7):991-8. PubMed ID: 11541346 [Abstract] [Full Text] [Related]
6. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO. d'Hendecourt L, Dartois E. Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar 15; 57(4):669-84. PubMed ID: 11345246 [Abstract] [Full Text] [Related]
9. Carbonaceous components in the comet Halley dust. Fomenkova MN, Chang S, Mukhin LM. Geochim Cosmochim Acta; 1994 Oct 15; 58(20):4503-12. PubMed ID: 11539150 [Abstract] [Full Text] [Related]
10. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs. Elsila J, Allamandola LJ, Sandford SA. Astrophys J; 1997 Apr 20; 479(2 Pt 1):818-38. PubMed ID: 11540158 [Abstract] [Full Text] [Related]
11. Detection of the 2165 inverse centimeter (4.619 micron) XCN band in the spectrum of L1551 IRS 5. Tegler SC, Weintraub DA, Allamandola LJ, Sandford SA, Rettig TW, Campins H. Astrophys J; 1993 Jul 01; 411(1):260-5. PubMed ID: 11539184 [Abstract] [Full Text] [Related]
12. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. Salama F, Galazutdinov GA, Krelowski J, Allamandola LJ, Musaev FA. Astrophys J; 1999 Nov 20; 526 Pt 1():265-73. PubMed ID: 11543306 [Abstract] [Full Text] [Related]
13. Laboratory simulation of organic grain mantles. Mendoza-Gomez CX, Greenberg JM. Orig Life Evol Biosph; 1993 Feb 20; 23(1):23-8. PubMed ID: 11536523 [Abstract] [Full Text] [Related]
14. Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O. Agarwal VK, Schutte W, Greenberg JM, Ferris JP, Briggs R, Connor S, Van de Bult CP, Baas F. Orig Life Evol Biosph; 1985 Feb 20; 16():21-40. PubMed ID: 11542015 [Abstract] [Full Text] [Related]
16. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Bernstein MP, Sandford SA, Allamandola LJ, Gillette JS, Clemett SJ, Zare RN. Science; 1999 Feb 19; 283(5405):1135-8. PubMed ID: 10024233 [Abstract] [Full Text] [Related]
17. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission. Arnoult KM, Wdowiak TJ, Beegle LW. Astrophys J; 2000 Jun 01; 535(2 Pt 1):815-22. PubMed ID: 11543517 [Abstract] [Full Text] [Related]
18. The physical and infrared spectral properties of CO2 in astrophysical ice analogs. Sandford SA, Allamandola LJ. Astrophys J; 1990 May 20; 355(1):357-72. PubMed ID: 11538691 [Abstract] [Full Text] [Related]
19. The composition of interstellar molecular clouds. Irvine WM. Space Sci Rev; 1999 May 20; 90(1-2):203-18. PubMed ID: 11543287 [Abstract] [Full Text] [Related]
20. Laboratory comparisons of organic materials to interstellar dust and the Murchison meteorite. Pendleton YJ. Planet Space Sci; 1995 May 20; 43(10-11):1359-64. PubMed ID: 11540309 [Abstract] [Full Text] [Related] Page: [Next] [New Search]