These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


421 related items for PubMed ID: 11550301

  • 1. Primary and secondary glioblastomas: from concept to clinical diagnosis.
    Kleihues P, Ohgaki H.
    Neuro Oncol; 1999 Jan; 1(1):44-51. PubMed ID: 11550301
    [Abstract] [Full Text] [Related]

  • 2. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression.
    Nozaki M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H, Ishii N, Van Meir EG.
    Neuro Oncol; 1999 Apr; 1(2):124-37. PubMed ID: 11550308
    [Abstract] [Full Text] [Related]

  • 3. Phenotype vs genotype in the evolution of astrocytic brain tumors.
    Kleihues P, Ohgaki H.
    Toxicol Pathol; 2000 Apr; 28(1):164-70. PubMed ID: 10669004
    [Abstract] [Full Text] [Related]

  • 4. Genetic profile of gliosarcomas.
    Reis RM, Könü-Lebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H.
    Am J Pathol; 2000 Feb; 156(2):425-32. PubMed ID: 10666371
    [Abstract] [Full Text] [Related]

  • 5. Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features.
    Benito R, Gil-Benso R, Quilis V, Perez M, Gregori-Romero M, Roldan P, Gonzalez-Darder J, Cerdá-Nicolas M, Lopez-Gines C.
    Neuropathology; 2010 Aug; 30(4):392-400. PubMed ID: 20051017
    [Abstract] [Full Text] [Related]

  • 6. Genetic pathways to primary and secondary glioblastoma.
    Ohgaki H, Kleihues P.
    Am J Pathol; 2007 May; 170(5):1445-53. PubMed ID: 17456751
    [Abstract] [Full Text] [Related]

  • 7. Mutations of TP53, amplification of EGFR, MDM2 and CDK4, and deletions of CDKN2A in malignant astrocytomas.
    Biernat W, Debiec-Rychter M, Liberski PP.
    Pol J Pathol; 1998 May; 49(4):267-71. PubMed ID: 10323080
    [Abstract] [Full Text] [Related]

  • 8. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas.
    Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H.
    Acta Neuropathol; 1997 Oct; 94(4):303-9. PubMed ID: 9341929
    [Abstract] [Full Text] [Related]

  • 9. Correlation among pathology, genotype, and patient outcomes in glioblastoma.
    Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, Ohgaki H.
    J Neuropathol Exp Neurol; 2006 Sep; 65(9):846-54. PubMed ID: 16957578
    [Abstract] [Full Text] [Related]

  • 10. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas.
    Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H.
    Brain Pathol; 1996 Jul; 6(3):217-23; discussion 23-4. PubMed ID: 8864278
    [Abstract] [Full Text] [Related]

  • 11. p53 mutations versus EGF receptor expression in giant cell glioblastomas.
    Peraud A, Watanabe K, Plate KH, Yonekawa Y, Kleihues P, Ohgaki H.
    J Neuropathol Exp Neurol; 1997 Nov; 56(11):1236-41. PubMed ID: 9370234
    [Abstract] [Full Text] [Related]

  • 12. Glioblastoma multiforme in an Asian population: evidence for a distinct genetic pathway.
    Das A, Tan WL, Teo J, Smith DR.
    J Neurooncol; 2002 Nov; 60(2):117-25. PubMed ID: 12635658
    [Abstract] [Full Text] [Related]

  • 13. Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma.
    Aghi M, Gaviani P, Henson JW, Batchelor TT, Louis DN, Barker FG.
    Clin Cancer Res; 2005 Dec 15; 11(24 Pt 1):8600-5. PubMed ID: 16361543
    [Abstract] [Full Text] [Related]

  • 14. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas.
    Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y, Kleihues P, Ohgaki H.
    J Neuropathol Exp Neurol; 1998 Jul 15; 57(7):684-9. PubMed ID: 9690672
    [Abstract] [Full Text] [Related]

  • 15. Comparative molecular genetic profiles of anaplastic astrocytomas/glioblastomas multiforme and their subsequent recurrences.
    Saxena A, Shriml LM, Dean M, Ali IU.
    Oncogene; 1999 Feb 11; 18(6):1385-90. PubMed ID: 10022821
    [Abstract] [Full Text] [Related]

  • 16. Characterisation of molecular alterations in microdissected archival gliomas.
    Walker C, Joyce KA, Thompson-Hehir J, Davies MP, Gibbs FE, Halliwell N, Lloyd BH, Machell Y, Roebuck MM, Salisbury J, Sibson DR, Du Plessis D, Broome J, Rossi ML.
    Acta Neuropathol; 2001 Apr 11; 101(4):321-33. PubMed ID: 11355303
    [Abstract] [Full Text] [Related]

  • 17. Necrogenesis and Fas/APO-1 (CD95) expression in primary (de novo) and secondary glioblastomas.
    Tohma Y, Gratas C, Van Meir EG, Desbaillets I, Tenan M, Tachibana O, Kleihues P, Ohgaki H.
    J Neuropathol Exp Neurol; 1998 Mar 11; 57(3):239-45. PubMed ID: 9600216
    [Abstract] [Full Text] [Related]

  • 18. Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter.
    Fujisawa H, Kurrer M, Reis RM, Yonekawa Y, Kleihues P, Ohgaki H.
    Am J Pathol; 1999 Aug 11; 155(2):387-94. PubMed ID: 10433932
    [Abstract] [Full Text] [Related]

  • 19. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas.
    Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H.
    Lab Invest; 2000 Jan 11; 80(1):65-72. PubMed ID: 10653004
    [Abstract] [Full Text] [Related]

  • 20. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas.
    Biernat W, Kleihues P, Yonekawa Y, Ohgaki H.
    J Neuropathol Exp Neurol; 1997 Feb 11; 56(2):180-5. PubMed ID: 9034372
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.