These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S. Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [Abstract] [Full Text] [Related]
4. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T. Mol Microbiol; 2009 Feb; 71(4):851-63. PubMed ID: 19170874 [Abstract] [Full Text] [Related]
5. Molecular and biochemical basis of the interaction between tomato and its fungal pathogen Cladosporium fulvum. de Wit PJ, Laugé R, Honée G, Joosten MH, Vossen P, Kooman-Gersmann M, Vogelsang R, Vervoort JJ. Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):137-41. PubMed ID: 9049025 [Abstract] [Full Text] [Related]
15. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa. Al-Ahmad H, Gressel J. Plant Biotechnol J; 2006 Jan; 4(1):23-33. PubMed ID: 17177782 [Abstract] [Full Text] [Related]
18. A two genes - for - one gene interaction between Leptosphaeria maculans and Brassica napus. Petit-Houdenot Y, Degrave A, Meyer M, Blaise F, Ollivier B, Marais CL, Jauneau A, Audran C, Rivas S, Veneault-Fourrey C, Brun H, Rouxel T, Fudal I, Balesdent MH. New Phytol; 2019 Jul; 223(1):397-411. PubMed ID: 30802965 [Abstract] [Full Text] [Related]