These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 11555657
41. Biosynthesis of 2-O-D-glucopyranosyl-l-ascorbic acid from maltose by an engineered cyclodextrin glycosyltransferase from Paenibacillus macerans. Liu L, Han R, Shin HD, Li J, Du G, Chen J. Carbohydr Res; 2013 Dec 15; 382():101-7. PubMed ID: 24239542 [Abstract] [Full Text] [Related]
42. Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. Chang HY, Irwin PM, Nikolov ZL. J Biotechnol; 1998 Oct 27; 65(2-3):191-202. PubMed ID: 9828462 [Abstract] [Full Text] [Related]
43. Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the gamma-cyclodextrin production. Parsiegla G, Schmidt AK, Schulz GE. Eur J Biochem; 1998 Aug 01; 255(3):710-7. PubMed ID: 9738912 [Abstract] [Full Text] [Related]
44. Effect on product specificity of cyclodextrin glycosyltransferase by site-directed mutagenesis. Kim YH, Bae KH, Kim TJ, Park KH, Lee HS, Byun SM. Biochem Mol Biol Int; 1997 Feb 01; 41(2):227-34. PubMed ID: 9063562 [Abstract] [Full Text] [Related]
45. beta-Ketoacyl-[acyl carrier protein] synthase I of Escherichia coli: aspects of the condensation mechanism revealed by analyses of mutations in the active site pocket. McGuire KA, Siggaard-Andersen M, Bangera MG, Olsen JG, von Wettstein-Knowles P. Biochemistry; 2001 Aug 21; 40(33):9836-45. PubMed ID: 11502177 [Abstract] [Full Text] [Related]
46. Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. Leemhuis H, Dijkstra BW, Dijkhuizen L. FEBS Lett; 2002 Mar 13; 514(2-3):189-92. PubMed ID: 11943149 [Abstract] [Full Text] [Related]
47. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme. Mosi R, He S, Uitdehaag J, Dijkstra BW, Withers SG. Biochemistry; 1997 Aug 12; 36(32):9927-34. PubMed ID: 9245426 [Abstract] [Full Text] [Related]
48. On the role of histidine residues in cyclodextrin glycosyltransferase: chemical modification with diethyl pyrocarbonate. Bender H. Carbohydr Res; 1991 Jan 15; 209():145-53. PubMed ID: 1828005 [Abstract] [Full Text] [Related]
49. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Li Z, Ban X, Gu Z, Li C, Huang M, Hong Y, Cheng L. Carbohydr Polym; 2014 Aug 08; 108():112-7. PubMed ID: 24751254 [Abstract] [Full Text] [Related]
50. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. Nakanishi Y, Saijo T, Wada Y, Maeshima M. J Biol Chem; 2001 Mar 09; 276(10):7654-60. PubMed ID: 11113147 [Abstract] [Full Text] [Related]
52. Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase. Fraser ME, Joyce MA, Ryan DG, Wolodko WT. Biochemistry; 2002 Jan 15; 41(2):537-46. PubMed ID: 11781092 [Abstract] [Full Text] [Related]
53. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK, Wu G, Massiah MA, Mildvan AS. Biochemistry; 2000 Feb 22; 39(7):1655-74. PubMed ID: 10677214 [Abstract] [Full Text] [Related]
55. Enhancing the α-Cyclodextrin Specificity of Cyclodextrin Glycosyltransferase from Paenibacillus macerans by Mutagenesis Masking Subsite -7. Wang L, Duan X, Wu J. Appl Environ Microbiol; 2016 Apr 22; 82(8):2247-2255. PubMed ID: 26850297 [Abstract] [Full Text] [Related]
56. Mutation of tyrosine167histidine at remote substrate binding subsite -6 in α-cyclodextrin glycosyltransferase enhancing α-cyclodextrin specificity by directed evolution. Song B, Yue Y, Xie T, Qian S, Chao Y. Mol Biotechnol; 2014 Mar 22; 56(3):232-9. PubMed ID: 24037411 [Abstract] [Full Text] [Related]
57. Enhancing 2-O-α-D-glucopyranosyl-L-ascorbic acid synthesis by weakening the acceptor specificity of CGTase toward glucose and maltose. Tao X, Kong D, Zhang H, Su L, Chen S, Rao D, Wei B, Wu J, Wang L. Bioprocess Biosyst Eng; 2023 Jun 22; 46(6):903-911. PubMed ID: 37103578 [Abstract] [Full Text] [Related]