These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 11558366

  • 1. [Evaluation of effect of the peptide structure on energetics of reduction-oxidation reactions of proteins containing Fe4S4 clusters in computer experiments].
    Ivaĭkina AG, Balabaev NK, Shaĭtan KV.
    Biofizika; 2001; 46(4):589-94. PubMed ID: 11558366
    [Abstract] [Full Text] [Related]

  • 2. Density functional and reduction potential calculations of Fe4S4 clusters.
    Torres RA, Lovell T, Noodleman L, Case DA.
    J Am Chem Soc; 2003 Feb 19; 125(7):1923-36. PubMed ID: 12580620
    [Abstract] [Full Text] [Related]

  • 3. Sulfur K-edge XAS and DFT calculations on [Fe4S4]2+ clusters: effects of H-bonding and structural distortion on covalency and spin topology.
    Dey A, Roche CL, Walters MA, Hodgson KO, Hedman B, Solomon EI.
    Inorg Chem; 2005 Nov 14; 44(23):8349-54. PubMed ID: 16270973
    [Abstract] [Full Text] [Related]

  • 4. Factors influencing redox thermodynamics and electron self-exchange for the [Fe4S4] cluster in Chromatium vinosum high potential iron protein: the role of core aromatic residues in defining cluster redox chemistry.
    Soriano A, Li D, Bian S, Agarwal A, Cowan JA.
    Biochemistry; 1996 Sep 24; 35(38):12479-86. PubMed ID: 8823183
    [Abstract] [Full Text] [Related]

  • 5. A convenient route to synthetic analogues of the oxidized form of high-potential iron-sulfur proteins.
    Tanifuji K, Yamada N, Tajima T, Sasamori T, Tokitoh N, Matsuo T, Tamao K, Ohki Y, Tatsumi K.
    Inorg Chem; 2014 Apr 21; 53(8):4000-9. PubMed ID: 24694068
    [Abstract] [Full Text] [Related]

  • 6. Ligand K-edge X-ray absorption spectroscopy and DFT calculations on [Fe3S4]0,+ clusters: delocalization, redox, and effect of the protein environment.
    Dey A, Glaser T, Moura JJ, Holm RH, Hedman B, Hodgson KO, Solomon EI.
    J Am Chem Soc; 2004 Dec 29; 126(51):16868-78. PubMed ID: 15612726
    [Abstract] [Full Text] [Related]

  • 7. Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin.
    Dey A, Jenney FE, Adams MW, Babini E, Takahashi Y, Fukuyama K, Hodgson KO, Hedman B, Solomon EI.
    Science; 2007 Nov 30; 318(5855):1464-8. PubMed ID: 18048692
    [Abstract] [Full Text] [Related]

  • 8. Ligand K-edge X-ray absorption spectroscopy of [Fe4S4]1+,2+,3+ clusters: changes in bonding and electronic relaxation upon redox.
    Dey A, Glaser T, Couture MM, Eltis LD, Holm RH, Hedman B, Hodgson KO, Solomon EI.
    J Am Chem Soc; 2004 Jul 07; 126(26):8320-8. PubMed ID: 15225075
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Characterization of an autoreduction pathway for the [Fe4S4]3+ cluster of mutant Chromatium vinosum high-potential iron proteins. Site-directed mutagenesis studies to probe the role of phenylalanine 66 in defining the stability of the [Fe4S4] center provide evidence for oxidative degradation via a [Fe3S4] cluster.
    Bian S, Hemann CF, Hille R, Cowan JA.
    Biochemistry; 1996 Nov 19; 35(46):14544-52. PubMed ID: 8931551
    [Abstract] [Full Text] [Related]

  • 11. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC.
    Met Ions Biol Syst; 2001 Nov 19; 38():461-655. PubMed ID: 11219019
    [No Abstract] [Full Text] [Related]

  • 12. Amino acid sequence of a high redox potential ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class.
    Ambler RP, Meyer TE, Kamen MD.
    Arch Biochem Biophys; 1993 Oct 19; 306(1):215-22. PubMed ID: 8215406
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Influence of surface charges on redox properties in high potential iron-sulfur proteins.
    Luchinat C, Capozzi F, Borsari M, Battistuzzi G, Sola M.
    Biochem Biophys Res Commun; 1994 Aug 30; 203(1):436-42. PubMed ID: 8074688
    [Abstract] [Full Text] [Related]

  • 17. Interconversion between [Fe4S4] and [Fe2S2] Clusters Bearing Amide Ligands.
    Tanifuji K, Tajima S, Ohki Y, Tatsumi K.
    Inorg Chem; 2016 May 02; 55(9):4512-8. PubMed ID: 27064714
    [Abstract] [Full Text] [Related]

  • 18. Formation of linear three-iron clusters in Aquifex aeolicus two-iron ferredoxins: effect of protein-unfolding speed.
    Higgins CL, Wittung-Stafshede P.
    Arch Biochem Biophys; 2004 Jul 15; 427(2):154-63. PubMed ID: 15196989
    [Abstract] [Full Text] [Related]

  • 19. The IscA from Acidithiobacillus ferrooxidans is an iron-sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur.
    Zeng J, Geng M, Jiang H, Liu Y, Liu J, Qiu G.
    Arch Biochem Biophys; 2007 Jul 15; 463(2):237-44. PubMed ID: 17470358
    [Abstract] [Full Text] [Related]

  • 20. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC.
    Biochemistry; 2004 Mar 23; 43(11):3204-13. PubMed ID: 15023070
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.